
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: CCC ooommm ppp uuu ttt eee rrr SSS ccc iii eee nnn ccc eee

ISSN 1342-2812

Propagation Connectivity of Random Hypergraphs

A. Coja-Oghlan, M. Onsjö, and O. Watanabe

April 2010, C–271

Propagation Connectivity of Random Hypergraphs

Amin Coja-Oghlan∗, Mikael Onsjö†, and Osamu Watanabe†

Tokyo Tech. Dept. MSC, Research Report C-271, April 2010

Abstract

We study the concept of propagation connectivity on random 3-uniform hypergraphs.
This concept is inspired by a simple linear time algorithm for solving instances of certain
constraint satisfaction problems. We derive upper and lower bounds for the propagation
connectivity threshold, and point out some algorithmic implications.
Key words: random hypergraphs, constraint satisfaction problems, efficient algorithms.

1 Introduction and results

1.1 The propagation connectivity threshold

There are several natural ways to define connectivity for 3-uniform hypergraphs H = (V, E).
For instance, a standard concept is to consider H connected if the graph obtained by replacing
each edge e by a triangle is connected (recall that in a 3-uniform hypergraph each edge is a
set of three vertices).

In this paper we study a different concept that we call propagation connectivity.

Definition 1. Let H = (V, E) be a 3-uniform hypergraph on n = |V | vertices. We call a
sequence e1, . . . , en−2 ∈ E a propagation sequence if for any 1 ≤ l < n − 2 we have |el+1 ∩⋃l

i=1 el| = 2. If H has a propagation sequence, then we say that H is propagation connected.

This definition is motivated by a simple algorithm for a certain kind of constraint satisfaction
problem. For the time being, let us focus on the concrete example of a system of linear
equations over a finite field with three variables per equation. We can associate a hypergraph
H with this system by thinking of the variables as vertices and of the equations as hyperedges.
If we are given a propagation sequence e1, . . . , en−2 for H, then we can find a solution to the
system of equations in linear time (if there is one). Namely, suppose that the variables of e1 are
x, y, z. We can easily ‘guess’ the correct values of x, y (i.e., we can try all possible assignments
because the field is finite). Then the value of z is implied. Now, assume inductively that
we have obtained the values of the variables occurring in the first l edges/equations e1, . . . , el

∗University of Warwick, Mathematics and Computer Science, Zeeman building, Coventry CV4 7AL, UK,

a.coja-oghlan@warwick.ac.uk. Supported by EP/G039070/1 and DIMAP.
†Tokyo Institute of Technology, Department of Mathematical and Computing Sciences, Meguro-ku

Ookayama 2-12-1 W8-25, {mikael,watanabe}@is.titech.ac.jp. Supported in part by the JSPS Global COE

program CompView and by Grants-in-Aid for Scientific Research on the Priority Area Dex-SMI from MEXT

1

already. Then el+1 contains precisely one additional variable (by the definition of propagation
sequence), whose value we can thus infer directly. Thus, after passing through the entire
sequence e1, . . . , en−2, we have determined the values of all n variables. If this solves the linear
system, we are done. Conversely, if we find that no assignment to the first two variables x, y

leads to a solution, then it is safe to conclude that no solution exists.
The contribution of this paper is close upper and lower bounds on the edge probability

that the propagation connectivity holds in random hypergraphs. More precisely, we consider
the following random hypergraph model H(n, p): the vertex set of the random hypergraph is
V = [n] = {1, . . . , n}, and each of the

(
n
3

)
possible edges is present with probability 0 ≤ p ≤ 1

independently. We write H : H(n, p) to indicate that H is a random hypergraph chosen from
this distribution. Moreover, we say that the random hypergraph has some property with high
probability (w.h.p.) if the probability that the property holds converges to one as n →∞.

Theorem 1. Suppose that p = c
n ln n for a constant c > 0.

(1) If c < 0.16, then H : H(n, p) fails to be propagation connected w.h.p.
(2) If c > 0.25, then H : H(n, p) is propagation connected w.h.p.

Determining the threshold for ‘standard’ connectivity (where each hyperedge is replaced by
a triangle) is easy. The result is a hardly surprising p ∼ 2n−2 ln n, and the proof is via a
simple coupon collecting argument. By contrast, analyzing propagation connectivity is quite
non-trivial. Our proof is based on a kind of large deviations analysis of a time-dependent
random walk. A precise solution of this problem might close the gap left by Theorem 1 for
showing a propagation connectivity threshold (if it indeed exists).

1.2 Computing a propagation sequence

For a propagation connected hypergraph H one can determine a propagation sequence in
polynomial time via a generalized breadth first search procedure. However, the running time
of this algorithm is superlinear (in contrast to BFS on graphs). The following theorem shows
that there is an algorithm with linear expected running time. (The proof is given in the
appendix.)

Theorem 2. There is a randomized algorithm A that satisfies the following. Fix c > 0.25
and let p = c/(n ln n). Then A applied to H : H(n, p) outputs a propagation sequence w.h.p.
in linear expected time.

As an application, we show how Theorem 2 yields an algorithm for deciding a class of random
constraint satisfaction problems. A CSP instance with domain [k] = {1, . . . , k} consists of a
hypergraph H = (V, E) with V = [n] and a family (fe)e∈E of maps fe : [k]× [k]× [k] → {0, 1}.
Moreover, a solution is a map σ : V → [k] such that for any triple 1 ≤ x < y < z ≤ n

of vertices with e = {x, y, z} ∈ E we have fe(σ(x), σ(y), σ(z)) = 1. Thus, intuitively the
hypergraph H describes the interactions of the variables V , and for any edge e the map fe

characterizes the values that can be assigned to the variables in e so as to satisfy the constraint
that e represents.

2

Furthermore, we say that a CSP instance is propagating if for any x, y ∈ [k], any i ∈ {1, 2, 3},
and any edge e ∈ E there is precisely one value zi ∈ [k] such that fe(z1, x, y) = fe(x, z2, y) =
fe(x, y, z3) = 1. In other words, once we assign two variable in a constraint e, there is precisely
one way to assign the third variable so as to satisfy e. Clearly, systems of linear equations over
a finite field provide an example of propagating problems, but there are many others.

By combining Theorem 2 with the simple propagation procedure outlined after Definition 1,
we obtain the following result.

Corollary 3. Fix c > 0.25 and k ≥ 2 and let p = c/(n ln n). Moreover, assume that P

is a probability distribution over propagating CSP instance with domain [k] such that the
distribution of the random hypergraph underlying the problem instance coincides with the
distribution H(n, p). There is an algorithm with linear expected running time that decides
whether a random CSP instance chosen from the distribution P has a solution w.h.p.

There are a variety of probability distribution over CSPs that satisfy the assumptions of
Corollary 3. Examples include uniformly random systems of linear equations, which at the
density assumed in Corollary 3 do not have solutions w.h.p. Thus, for these problems running
the algorithm in Corollary 3 will provide a succinct proof that no solution exists w.h.p. On the
other hand, distributions that do admit solutions w.h.p. include systems of linear equations
with a ‘planted’ solution, for which the algorithm will find a solution in linear time w.h.p.

1.3 Related work

The ‘standard’ concept of random hypergraph connectivity (where edges are replaced by tri-
angles) has been studied, e.g., in [BCK07, CMV07], particularly with respect to the emergence
and size of the giant component. These results generalize what was known for random graphs
(see [JLR00] for a comprehensive summary). A further related random hypergraph concept is
that of a core. This concept is related to local search algorithms such as the ‘pure literal rule’
for the satisfiability. Contributions on these subjects include [DN05, Mol05].

Berke and Onsjö [BO09] approached the propagation connectivity threshold for random 3-
uniform hypergraphs. They established a lower bound of p = Ω(1/n(log n)2) and an upper
bound of p = O(1/n(log n)0.4). As Theorem 1 shows, the correct order of magnitude is
p = Θ(1/(n ln n)).

With respect to the application to random constraint satisfaction problems, it is clear that
the case of linear equations over finite fields can be solved in polynomial (albeit superlinear)
time by Gaussian elimination. However, if the underlying hypergraph comes with a propa-
gation sequence, then the problem can be solved in linear time as indicated. While linear
equations provide an example of propagating constraint satisfaction problems, there exist NP-
hard examples, too [CM04].

1.4 Preliminaries and notation

We will use the following Chernoff bound on the tails of a binomially distributed random
variable X with mean µ (e.g., [JLR00, p. 21]): letting ϕ(x) = (1 + x) ln(1 + x) − x, we have

3

for any t > 0
Pr[X ≤ µ− t] ≤ exp

(−µ · ϕ(−t/µ)
)
, and

Pr[X ≥ µ + t] ≤ exp
(−µ · ϕ(t/µ)

)
,

(1)

We will also use the following Stirling bounds, see, e.g., [MU05, Lemma 7.3]: for any n, we
have √

2πn
(n

e

)n
≤ n! ≤ 2

√
2πn

(n

e

)n
.

For simplifying our notations we omit specifying ceiling or floor functions so long as they
can be determined from the context.

2 The propagation process

In this section we show how the propagation connectivity problem can be modeled by a stochas-
tic process, which we call the propagation process. We start out by describing this process for a
fixed hypergraph H = (V, E) with vertex set V = {1, . . . , n}. Let (v1, v2) be a pair of distinct
vertices, which we refer to as the initial pair. In the course of the prcoess, vertices are either
active, neutral, or dead. Initially v1 is dead, v2 is active, and all other vertices are neutral;
formally, we let

D(v1,v2)
0 [H] = {v1} , A(v1,v2)

0 [H] = {v2} .

Once there is no active vertex left, the process stops. Otherwise at each time t ≥ 1, the least
active vertex u is chosen (recall that V = [n] is an ordered set). All neutral vertices v for which
there is a dead vertex w such that {u, v, w} ∈ E are declared active, and then u is declared
dead. In symbols, we let u = minA(v1,v2)

t−1 [H] and

D(v1,v2)
t [H] = D(v1,v2)

t−1 [H] ∪ {u} ,

A(v1,v2)
t [H] =

(
A(v1,v2)

t−1 [H] \ {u}
)
∪

{
v 6∈ D(v1,v2)

t−1 [H] : ∃w ∈ D(v1,v2)
t−1 [H] : {u, v, w} ∈ E

}
.

Thus, at time t the total number of dead vertices equals t + 1. Let T (v1,v2) [H] be the time
when the process stops. To avoid case distinctions, we consider vertices dead (or active, or
neutral) at times t > T (v1,v2) [H] if they had the corresponding predicate at time T (v1,v2) [H].
Observe that for a fixed hypergraph H, the process is entirely deterministic.

The process is related to the propagation connectivity problem as follows. Assume that
vertex v was declared active at time t ≥ 2. Then H has an edge et that contains v and two
vertices from D(v1,v2)

t [H]. Proceeding inductively, we obtain a sequence e2, . . . , et such that
v1, v2 ∈ e2 and |el+1 ∩

⋃l
i=2 | ≥ 2 for all 2 ≤ l < t. Hence, if all vertices are declared dead

eventually, i.e., if T (v1,v2) [H] = n − 1, then we obtain a propagation sequence. Conversely, if
there is a propagation sequence e2, . . . , en−1 such that v1, v2 ∈ e2, then the propagation process
will not stop before time n− 1. Thus, we have the following.

Fact 1. H is propagation connected iff there is a pair (v1, v2) such that T (v1,v2) [H] = n− 1.

To prove Theorem 1, we are going to study the propagation process on a random hypergraph
H : H(n, p). In this case we omit the reference to H, i.e., we just write D(v1,v2)

t etc. It will be

4

convenient to use the terminology of stochastic processes. In particular, for t ≥ 0 we let F (v1,v2)
t

signify the coarsest σ-algebra on H(n, p) in which all events {v ∈ D(v1,v2)
s } and {v ∈ A(v1,v2)

s }
for s ≤ t and v ∈ V are measurable. Then (F (v1,v2)

t)t≥0 is a filtration. We will also use
the concept of conditional probabilities with respect to the filtration (Ft)t≥0 (see [D05]). To
remind the reader, for an event A and a (fixed) hypergraph H0 the conditional probability is

Pr
[
A|F (v1,v2)

t

]
(H0) =

Pr
[
A occurs and D(v1,v2)

s = D(v1,v2)
s [H0] , A(v1,v2)

s = A(v1,v2) [H0] for all s ≤ t
]

Pr
[
D(v1,v2)

s = D(v1,v2)
s [H0] , A(v1,v2)

s = A(v1,v2) [H0] for all s ≤ t
] .

In words, Pr
[
A|F (v1,v2)

t

]
(H0) is the probability of the event A in a random hypergraph H :

H(n, p) given that the first t steps of the propagation process on H work out the same as in
H0. As per standard practice, where the argument H0 is omitted, it is understood that the
corresponding statement holds for all H0.

For any t ≥ 1 the first t steps of the propagation process on the random hypergraph H :
H(n, p) only depend on the presence (or absence) of edges that contain at least two vertices
that have been declared dead by time t, i.e., from the set D(v1,v2)

t . This means that the presence
of edges e with |e ∩ D(v1,v2)

t | < 2 is stochastically independent of the first t steps.

Fact 2. Given Ft, for all triples e = {u, v, w} such that
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2, the edge e is present
in H : H(n, p) with probability p independently. In symbols, for any set

E ⊂
{

e ∈
(

V

3

)
:
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2
}

we have Pr
[
E ⊂ E(H)|F (v1,v2)

t

]
= p|E|.

The above propagation process is similar in spirit to the branching process approach for the
giant component problem in random graphs/digraphs [Kar90]. The difference between our
proofs and the standard argument is that we need to investigate whether there exists a pair
(v1, v2) such that T (v1,v2) ≥ n − 1 (cf. Fact 1). Since there are a total of

(
n
2

)
initial pairs to

choose from, this means that we need to study unlikely trajectories of the propagation process
(that occur with probability merely about 1/

(
n
2

)
).

By contrast, for the giant component problem the corresponding process has to be studied
only from a random start vertex, a problem which relatively easily reduces to the typical
behavior of a standard Galton-Watson branching process. Alternatively, the problem can
be tackled via a whole arsenal of different techniques, ranging from differential equations to
random walks. Unfortunately, the fact that here we need to study an ‘exceptional’ event puts
these standard arguments out of business.

To get started, we point out that the hypergraph distribution H : H(n, p) is invariant w.r.t.
permutations of the vertices. Therefore, the distribution of the propagation process is the
same for any initial pair. For the sake of concreteness we will refer to (v1, v2) = (1, 2). For this

5

initial pair we will omit the superscript (v1, v2) from the notation. Moreover, we let At = |At|
be the number of active vertices at time t (from the initial pair (1, 2)). Then A0 = 1 by
construction. For any t ≥ 1, we define a further random variable Xt via

Xt = At −At−1 + 1. (2)

That is, Xt is the number of vertices that got declared active at time t.

Fact 3. If 1 ≤ t ≤ T , then given Ft−1, the random variable Xt is binomially distributed
Bin(n− t−At−1, 1− (1− p)t).

Proof. The number of neutral vertices at time t− 1 equals n−At−1 − |Dt−1| = n−At−1 − t.
Suppose that v is neutral at time t− 1 and let u = minAt−1. Then v becomes active at time
t iff there is w ∈ Dt−1 such that {u, v, w} ∈ E. By Fact 2 each of these t edges is present
in H with probability p independently. Hence, the probability that all of them are absent is
1− (1− p)t. ¤

To outline the proof of Theorem 1, let us interpret the propagation process in terms of a
time-dependent random walk. The process continues up to time t iff As > 0 for all 1 ≤ s ≤ t.
Due to (2), this is true iff

∑s
q=1(Xq−1) ≥ 0 for all 1 ≤ s ≤ t. Thus, if we think of the random

variables Xs−1 as the steps of a random walk, then the propagation process continues to time
t iff the random walk stays non-negative at all times s ≤ t. As Fact 3 shows, this random walk
is time-dependent.

In the regime p = Θ(1/(n ln n)) that we are interested in, and for times s ¿ lnn, the random
walk has a negative drift. More precisely, for s ¿ ln n Fact 3 implies that the expectation
of Xs − 1 is (1 + o(1))nps − 1 < 0. Therefore, standard results on random walks show that
the probability that the random walk will continue to time, say, lnn is o(1). If, however, the
process happens to survive up to time t = 1/(np) = Θ(lnn) for a fixed ε > 0, then Fact 3
shows that the ‘drift’ of Xt − 1 becomes positive and thus the process is likely to continue up
to time n− 1.

The previous paragraph shows that the probability that one specific initial pair leads to a
propagation sequence is o(1). But this does not imply that the random hypergraph H : H(n, p)
is not propagation connected w.h.p., because there is a total

(
n
2

)
initial pairs to choose from.

This observation suggests that in order find the threshold for propagation connectivity we need
to determine for what p the random walk continues to time 1/(np) with probability 1/

(
n
2

)
. In

Section 3 we will derive a lower bound on this value of p. The more challenging problem is to
obtain an upper bound, which we address in Section 4.

3 The lower bound

In this section we prove the first part of Theorem 1, i.e., we show that the random hypergraph
H : H(n, p) is not propagation connected w.h.p. if p < 0.16/(n lnn). To this end, we will derive
that the probability that the initial pair (1, 2) leads to a propagation sequence is o(n−2). By
symmetry and the union bound, this implies that w.h.p. no initial pair (v1, v2) does. We start

6

by reducing the problem of estimating the probability that (1, 2) yields a propagation sequence
to an exercise in calculus.

Lemma 4. Let p = c/(n lnn) for a fixed c > 0 and assume that 0 < d ≤ 2/c is such that
d(cd/2 + ln(2/cd)− 1) > 2. Let t0 = d ln n. Then Pr [T > t0] = o(n−2).

Proof. Let {X̃t}t≥1 be a family of mutually independent random variables such that X̃t has
distribution Bin(nt, p). Let t ≥ 1. By construction, for each vertex v ∈ At \At−1 that becomes
active at time t, there is an edge {u, v, w} in H : H(n, p) such that u = minAt−1 and w ∈ Dt−1.
In particular, the number Xt = |At \ At−1| + 1 of newly active vertices v is bounded by the
number of such edges {u, v, w}. By Fact 2, given Ft−1, each such edge is present in H with
probability p independently. As |Dt−1| = t and because the number of neutral vertices v

to choose from is bounded by n, this shows that Xt|Ft−1 is stochastically dominated by the
binomial variable X̃t = Bin(nt, p).

If the stopping time T exceeds some specific time t0, then At ≥ 1 for all t ∈ [t0]. Hence, (2)
implies

∑
1≤t≤t0

Xt ≥ t0. Because each Xt is dominated by X̃t, we can bound the probability
of this event by

Pr [T ≥ t0] ≤ Pr


 ∑

1≤t≤t0

Xt ≥ t0


 ≤ Pr


 ∑

1≤t≤t0

X̃t ≥ t0




= Pr


Bin


n ·

∑

1≤t≤t0

t, p


 ≥ t0


 = Pr

[
Bin

(
n · t0(t0 + 1)

2
, p

)
≥ t0

]
. (3)

Let µ0 denote the expectation of this last binomial distribution. Then

µ0 = n · t0(t0 + 1)
2

· p =
cd2

2

(
1 +

2
d ln n

)
lnn ∼ cd2

2
ln n. (4)

We are going to verify that our assumption on c, d implies that the r.h.s. of (3) is o(n−2).
Since we assume d ≤ 2/c, we have cd2

2 lnn = µ0 ≤ t0 = d ln n. Therefore, we can bound the
probability (3) via Chernoff (1) as follows:

Pr
[

Bin
(

n · t0(t0 + 1)
2

, p

)
≥ t0

]
≤ Pr

[
Bin

(
nt0(t0 + 1)

2
, p

)
≥ µ0 + (t0 − µ0)

]

≤ exp
(
−µ0 · ϕ

(
t0
µ0
− 1

))
= n

− µ0
ln n

·ϕ
“

t0
µ0
−1
”
.

Thus, we just need to verify that

µ0

lnn
· ϕ

(
t0
µ0
− 1

)
> 2. (5)

Using the approximation (4), we obtain

µ0

lnn
· ϕ

(
t0
µ0
− 1

)
=

µ0

ln n
·
(

t0
µ0

ln
t0
µ0
− t0

µ0
+ 1

)

∼ cd2

2

(
2
cd

ln
2
cd
− 2

cd
+ 1

)
= d

(
cd

2
+ ln

2
cd
− 1

)
.

7

Thus, our assumption on c, d implies (5). ¤

Proof of Theorem 1, part (1). Let c = 0.16 and p = c/(n lnn). Letting f(d) = d(cd/2 +
ln(2/cd)−1), we see that max0<d<2/c f(d) > 2. Hence, Lemma 4 entails that for c < 0.16, we
have Pr [T > t0] = o(n−2) for a certain t0 = O(lnn). By the union bound, this implies that
w.h.p. there is no pair (v1, v2) such that T (v1,v2) = n−1, whence H : H(n, p) is not propagation
connected w.h.p. by Fact 1. ¤

4 The upper bound

In this section we sketch the proof of part (2) of our main theorem, that is, an upper bound for
p such that H : H(n, p) is propagation connected w.h.p. The detail proofs of three propositions
stated here will be given in the following subsections. As we saw in Section 2, the propagation
process can be viewed as a time-dependent random walk. At first, the drift of this random
walk is negative, but after a certain time the drift turns positive. The following proposition
reflects this fact by showing that once the process has survived up to a certain time, it will
likely continue to time n− 1. In the following, we use ν = d(lnn)3e.
Proposition 5. Suppose that c > 0 is a constant and let p = c/(n ln n). Then w.h.p. there is
no pair (u, v) such that ν ≤ T (u,v) < n− 1.

In the light of Proposition 5, we call a pair of vertices (u, v) good if T (u,v) ≥ ν. Let N be the
number of good pairs of H : H(n, p). Then by Proposition 5 in order to prove that H : H(n, p)
is propagation connected w.h.p., we just need to establish that N > 0 w.h.p. We first estimate
the expected number of good pairs.

Proposition 6. For any fixed c > 0.25 there is a number δ = δ(c) > 0 such that for p =
c/(n lnn) we have E[N] ≥ Ω(nδ).

Then by the following proposition, we relate the above result on the expectation of N to
showing that N > 0 w.h.p. The proof of this proposition is based on a second moment
argument.

Proposition 7. Assume that δ, c > 0 are constants such that for p = c/(n lnn) we have
E [N] ≥ Ω(nδ). Then in fact N ≥ Ω(nδ) > 0 w.h.p.

Now the second part of Theorem 1 is a direct consequence of Propositions 5–7.

4.1 Proof of Proposition 5

Fix any constant c > 0, and let p = c/(n ln n). Also fix any sufficiently large n. Recall that
ν = d(lnn)3e.

Consider a random hypergraph H : H(n, p). For any L ⊆ V , we say that L is closed if there
is no edge in H having two vertices in L and one vertex in V \ L. Below we estimate the
probability that H has some Z ⊆ V satisfying

Z is closed ∧ ν < |Z| < n. (6)

8

Note that, starting from some vertex pair (u, v), if ν ≤ T (u,v) [H] < n−1, then the set D(u,v)
t [H]

of dead vertices at time t = T (u,v) [H] has exactly t + 1 vertices and satisfies (6). Thus, the
proposition is proved by showing this probability is o(1).

Consider any z, ν + 1 ≤ z ≤ n− 1. Then we have

Pr[∃Z [Z is closed ∧ |Z| = z]]

≤
(

n

z

)
(1− p)(

z
2)(n−z) ≤ n · nn

zz · (n− z)n−z
· exp

(
−p · z(z − 1)(n− z)

2

)

≤ exp(lnn + z ln n− z ln z) ·
(

1 +
z

n− z

)n−z

· exp
(
−p · z(z − 1)(n− z)

2

)

≤ exp(lnn + z ln n− z ln z) · exp(z) · exp
(−pz2n/8

)

≤ exp
(

z ·
(

ln n

z
+ ln n− ln z + 1− pzn

8

))

= exp
(

z ·
(

1
(lnn)2

+ lnn− ln z + 1− c(lnn)2

8

))
≤ exp(−z) = n−(ln n)2 .

Now by the union bound, the target probability is bounded by n · n−(ln n)2 = o(1).

4.2 Proof of Proposition 6

As indicated in Section 2, we basically need to analyze the probability that the random walk
described by the variables Xt = At − At−1 + 1 remains positive. From now on, we fix a
number c > 0.25 and let p = c/(n ln n) for n sufficiently large. We will keep the notation from
Section 2.

For a time t and a number g ≥ 1, we let AT(t, g) denote the event that At ≥ g. That is, the
process does not stop before time t, and at this time there are at least g active vertices. As
we saw in Section 2, the ‘drift’ of the time-dependent random walk described by the variables
Xt is negative for small t ¿ lnn. The following lemma will help us get over the first few steps
of the process. Intuitively, it shows that with a decent probability the process will not only
survive up to time γ ln n, but also amass a small excess of γ ln n active vertices for a small
γ > 0.

Lemma 8. For any δ > 0, there is γ0 = γ0(c, δ) > 0 such that for all 0 < γ < γ0, the event
AT(dγ lnne, dγ ln ne) holds with probability at least n−δ.

Proof. As limγ→0 2γ ln(c) − cγ2/2 + 2γ ln(γ/2) = 0, for any δ > 0, there is γ0 > 0 such that
for all 0 < γ < γ0, we have 2γ ln(c)− cγ2/2 + 2γ ln(γ/2) > −δ. Assume that γ, 0 < γ < γ0, is
sufficiently small so that this is the case. Let t1 = dγ lnne and t0 = bt1/2c. Then

Pr [AT(dγ lnne, dγ ln ne)] ≥ Pr


 ∧

1≤t≤t0

Xt = 1 ∧
∧

t0<t≤t1

Xt = 3


 .

(For if Xt > 0 for all t ∈ [t1], then the process won’t stop before time t1, i.e., T ≥ t1.
Moreover, the number of active vertices at time t1 equals

∑t1
t=1(Xt− 1) = 2(t1− t0) ≥ γ ln n.)

9

For 0 ≤ t ≤ t1, we let Et signify the event that Xs = 1 for all 1 ≤ s ≤ min {t, t0} and Xs = 3
for all t0 < s ≤ t. Then our objective is to lower bound Pr [Et1].

If we condition on the event Et−1 for some t ∈ [t1], then the number of neutral vertices at
time t works out to be n−(t+1)−At ≥ n−2t1−2 = n−O(lnn). Furthermore, Fact 3 entails
that Xt given Et−1 is binomially distributed Bin(n− t−At−1, 1− (1− p)t). Consequently,

Pr [Xt = 1|Et−1] ≥ (n−O(lnn))(1− (1− p)t)(1− p)tn ∼ ct

ln n
· exp(−ct/ lnn), and

Pr [Xt = 3|Et−1] ≥
(

n−O(lnn)
3

)
(1− (1− p)t)3(1− p)tn ∼ (ct)3

(lnn)3
· exp(−ct/ lnn).

Therefore, a small computation shows that

Pr [Et1] =
∏

1≤t≤t0

Pr [Xt = 1|Et−1] ·
∏

t0<t≤t1

Pr [Xt = 3|Et−1]

≥ c3t1−2t0n−cγ2/2
(γ

2

)3γ ln(n)/2
· exp

(∑t0
t=1 ln t

)

(lnn)t0
≥ Ω

(
n2γ ln(c)−cγ2/2+2γ ln(γ/2)

)
.

Since we have chosen γ so that 2γ ln(c)− cγ2/2 + 2γ ln(γ/2) > −δ, the assertion follows. ¤

Lemma 8 shows that with a decent probability the first few steps of the process will yield a
good number of active vertices. The following lemma studies the continuation of the process
up to the time c−1 ln n where the ‘drift’ of the random walk turns positive.

Lemma 9. There exists δ > 0 such that Pr[T ≥ d(c−1 + δ) ln ne] ≥ nδ−2.

Proof. Since c > 0.25, we can choose δ > 0 so that 4c(1 − δ) > 1. Let γ0 be the number
promised by Lemma 8. Moreover, choose 0 < γ < γ0 sufficiently small so that 1+4cγ− ln(1−
cγ) < 4c(1− δ). We may also assume that d(c−1 + δ) lnne ≤ dγ ln ne · (b(cγ)−1c+ 1

)
.

Let g = dγ ln ne and s0 = b(cγ)−1c. Then our goal is to estimate the probability that the
propagation process lasts at least (s0 + 1)g steps. To this end, we partition this period into
s0 + 1 chunks of size g. That is, for each s ∈ [s0], we define Ys =

∑
sg<t≤(s+1)g Xt. We are

going to lower bound the probability of the event

AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g). (7)

If this event occurs, then T ≥ g(s0 + 1). To see this, we show by induction that for each
1 ≤ s ≤ s0 at time t = sg there are at least g active vertices. For s = 1 this follows directly
from the definition for AT(g, g). Proceeding inductively, we note that the following period up
to time (s + 1)g will generate g new active vertices, because Ys+1 ≥ g. This ensures that at
time (s + 1)g there are at least g active vertices as well.

Thus, in order to establish the proposition, we just need to prove that the event (7) holds
with probability nδ−2. Lemma 8 shows that Pr [AT(g, g)] ≥ n−δ. In addition, we are going to
estimate probability that Ys ≥ g given AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g) for any s ∈ [s0].
In doing so we may assume that Asg ≤ 2c−1 ln n, because otherwise the process will continue
to time 2c−1 lnn > (c−1 + δ) ln n with certainty. Hence, we may assume that there are always

10

more than n′ = (n − 2c−1 ln n) = n(1 − o(1)) neutral vertices. On the other hand, at times
sg < t ≤ (s + 1)g there are at least sg dead vertices. Thus, Fact 3 implies that

Pr
[
Asg ≥ 2c−1 ln n ∨ Ys ≥ g |AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g)

]

≥ Pr


 ∑

sg<t≤(s+1)g

Xt ≥ g

∣∣∣∣∣∣
(
Asg < 2c−1 lnn

) ∧AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g)




≥ Pr
[
Bin(gn′, 1− (1− p)sg) ≥ g

] ≥
(

g2n′s
g

)
pg(1− p)g2n′s−g.

Let µs = g2n′sp and xs = g/µs. Applying Stirling’s formula, we obtain
(

g2n′s
g

)
pg(1− p)g2n′s−g ≥ c′ ·

√
m

g(m− g)
· mm

gg · (m− g)m−g
· pg(1− p)m−g

≥ c′√
g
·
(

pm

g

)g

·
(

m− pm

m− g

)m−g

= exp
(

ln c′ − ln g

2
− g ln xs + (m− g) ln

(
1− µs − g

m− g

))

≥ exp
(

ln c′ − ln g

2
− g ln xs − (µs − g)− (µs − g)2

m− g

)

≥ exp (−g lnxs + g − µs −O(ln lnn)) .

Hence,

Pr[(7)] = Pr[AT(g, g)] · Pr[(Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g) |AT(g, g)]

≥ n−δ ·
∏

1≤s≤s0

exp
(−g ln xs + g − µs − c′′ ln lnn

)

= n−δ · exp


 ∑

1≤s≤s0

(−g lnxs + g − µs − c′′ ln lnn
)

 (8)

Approximating the sum in the exponent by an integral, we see that

∑

1≤s≤s0

(−g ln xs + g − µs − c′′ ln lnn
) ≥ − lnn

2c
· (1 + o(1) + 3cγ − ln(1− cγ)

)

> −2 ln n + 2δ lnn,

where the last step is due to our choice of γ and δ. Finally, combining this estimate with (8)
yields Pr[(7)] ≥ n−δ · n−1/2cpos+2δ = nδ−2, as desired. ¤

The basic idea in the above proof was to study the behavior of the random walk by par-
titioning the time up to about c−1 lnn in short periods of length g = dγ ln ne with a small
γ > 0. What we estimated was the probability that for each of these periods the total num-
ber of newly generated active vertices is at least g, without taking into account how these g

vertices are distributed over the period. Alternatively, one could lower bound the probability

11

that the process survives up to time c−1 ln n by the probability that the process generates at
least one active vertex at each individual step. However, this argument gives a significantly
weaker result. Intuitively, this means that typically the process will generate a little bit of
‘leeway’ for itself by aggregating a certain excess of active vertices.

Once the process ‘survives’ up to time c−1 lnn, we are on firm ground, because then the
‘drift’ of the underlying random walk becomes positive. This observation yields the following
corollary to Lemma 9, which in turn implies Proposition 6.

Corollary 10. There is δ > 0 such that Pr [(1, 2) is good] = Ω(nδ−2).

Proof. Let δ be as in Proposition 6 and set θ = d(c−1 + δ) lnne. We condition on the event
that the propagation process for (1, 2) continues for at least θ steps, i.e., Aθ 6= 0. Then at time
θ there is a set of Aθ of active vertices, and a set of θ + 1 of dead vertices. Let

τ = min
{
t > θ : At = 0 or (t + 1) + At ≥ (lnn)3

}
.

In order to prove the proposition, we need to show that

Pr [Aτ 6= 0 |Aθ 6= 0] = Ω(1). (9)

This implies the assertion, because Lemma 9 shows that Pr [Aθ 6= 0] ≥ nδ−2.
In order to prove (9), we are going to approximate the propagation process for times θ < t <

τ by a Galton-Watson branching process with successor rate greater than one. This is possible
because for θ < t < τ , the number of neutral vertices at time t is at least n − (t + 1) − At ≥
n−(lnn)3. Therefore, the number Xt of new active vertices at time t has a binomial distribution
Bin(n− (t + 1)−At, 1− (1− p)t) (see Fact 3). Its expectation bounded away from one. That
is, for all t, θ < t < τ , we have

E [Xt|Ft−1] ∼ t(n− t−At)p ≥ (1− o(1))θnp = 1 + δ − o(1).

To set up the analogy with the branching process, let {X̃s}s≥1 be a family of mutually indepen-
dent random variables with distribution Bin(θ(n−(lnn)3), p) with mean E(X̃s) ≥ 1+δ−o(1) >

1. Let A′0 = Aθ > 0 and let A′s = A′s−1 + X̃s − 1 for all s ≥ 1 be the branching process corre-
sponding to the sequence (X̃s)s≥1. Furthermore, let τ ′ be the least s ≥ 1 such that A′s = 0 if
there is such an s, and set τ ′ = ∞ otherwise. Because n − At − t ≥ n − (lnn)3, the random
variable Xt dominates X̃t−θ for all θ < t < τ . Therefore,

Pr [Aτ = 0|Aθ > 0] ≤ Pr
[
τ ′ ≤ τ − θ

] ≤ Pr
[
τ ′ < ∞]

. (10)

Finally, as the random variables of {X̃s}s≥1 are i.i.d. with expectation greater than one, the
theory of branching processes (e.g., [Fe50, p. 297]) shows that Pr [τ ′ < ∞] ≤ 1 − α for some
number α = α(δ) > 0 that depends on δ only. Thus, (10) implies (9). ¤

12

4.3 Proof of Proposition 7

Recall that a pair (x, y) of (distinct) vertices is good if T (u,v) ≥ ν (= d(lnn)3e), in other words,
the process from (x, y) continues at least to time ν.

To bound the probability that there exists some good initial pair, we study the propagation
process first from (1, 2) and, given its outcome, the process from either π = (3, 4) or from
π = (1, 3). Thus, let At = A(1,2)

t , Dt = D(1,2)
t , T = T (1,2), At = |At|, Xt be the quantities that

characterize the process from (1, 2) as in Section 3. Then (1, 2) is good iff T ≥ ν. Let (Ft)t≥0

be the filtration corresponding to this process. (Recall that At, Ft, etc. are defined even for
t > T.)

In addition, we consider random sets/variables A′t = Aπ
t , D′t = Dπ

t , T ′ = T π, A′t = |A′t|,
X̃t = Xπ

t associated to the process commencing from π (= either (3, 4) or (1, 3)). Let

Ct =

{
1, if |(A′t ∪ D′t) ∩ (Aν ∪ Dν)| ≥ 2,

0, otherwise.

Let F ′0 = Fν . Moreover, for t ≥ 1, let F ′t be the coarsest σ-algebra such that F ′t ⊃ Fν and such
that all events {v ∈ A′s} for s ≤ t and v ∈ V are F ′t-measurable. Intuitively, F ′t captures the
propagation process from (1, 2) up to time min {ν, T} and the process from (3, 4) (or (1, 3))
up to time t. In analogy to Fact 2, we have the following.

Fact 4. Given F ′t, for all triples e = {u, v, w} such that max {|e ∩ Dν | , |e ∩ D′t|} < 2, the edge
e is present in H : H(n, p) with probability p independently.

Fact 5. Given F ′t−1, random variable (1− Ct−1)X̃t is stochastically dominated by

Bin(n− t−A′t−1, 1− (1− p)t).

Proof. If Ct−1 = 1 or t > T ′, then the statement is trivially true. Thus, we may condition
on Ct−1 = 0 and t ≤ T ′. Let a = minA′t−1 be the active vertex chosen at time t, and let
d ∈ D′t−1 be any dead vertex. Since Ct−1 = 0, Aν ∪ Dν contains at most one of a, d. Let
b 6∈ A′t−1∪D′t−1 be another vertex and set e = {a, b, d}. We are going to show that given F ′t−1,
the edge e is present with probability at most p independently. We consider several cases; note
that |e ∩ Dt−1| < 2.

Case 1: (a, d 6∈ Aν ∪Dν) In this case |e ∩ Dν | ≤ 1, and thus Fact 4 shows that e is present
with probability p.

Case 2: (b 6∈ Aν ∪ Dν) As Ct−1 = 0 and a, d ∈ A′t−1 ∪ D′t−1, at most one of a, d is in
Aν ∪ Dν . Thus, |e ∩ Dν | < 2, and therefore e is present with probability p by Fact 4.

Case 3: (a, b ∈ Aν ∪ Dν) We have d 6∈ Aν ∪ Dν , because otherwise A′t−1 ∪ D′t−1 would
contain two vertices from Aν ∪Dν and thus Ct−1 = 1. If in the (1, 2)-process both a, b are
dead at time ν, then e is not present, because otherwise d would have been included in
Aν ∪ Dν as well. If in the (1, 2)-process at least one of a, b is in Aν , then |e ∩ Dν | < 2 and
thus the probability that e is present equals p by Fact 4.

Case 4: (a, d ∈ Aν ∪ Dν) Identical to Case 3.

13

We have shown that for each of the n − t − A′t−1 vertices b 6∈ A′t−1 ∪ D′t−1 and each of the t

vertices d ∈ D′t−1 the edge e = {a, b, d} is present with probability at most p. Hence, for any
b the probability that at least one such edge is present is bounded by 1− (1− p)t. ¤

Lemma 11. Let H0 be any hypergraph such that Aν [H0] ≤ ν2.

• If π = (3, 4), then Pr [Cν = 1|F ′0] (H0) ≤ ν8n−2.
• If π = (1, 3), then Pr [Cν = 1|F ′0] (H0) ≤ ν4n−1.

Proof. If Cν = 1, then at least two vertices in Aν ∪ Dν belong to A′ν ∪ D′ν .
Consider the first assertion for the case π = (3, 4). For a pair 1 ≤ s ≤ s′ ≤ ν, we let E(s, s′)

be the event that (A′s \A′s−1)∩ (Aν ∪Dν) 6= ∅, Cs′−1 = 0, and Cs′ = 1. In other words, E(s, s′)
is the event that s ≤ s′ are the first times when vertices from Aν ∪ Dν become active in the
(3, 4)-process.

Let a = minA′s and a′ = minA′s′ . Note that the event E(s, s′) implies the existence of edges
e = {a, b, d} and e′ = {a′, b′, c′} for some d ∈ D′s, d′ ∈ D′s′ and b, b′ ∈ Aν ∪ Dν in a random
H : H(n, p) consistent with H0. For these edges, by construction, we have

∣∣e ∩ D′s−1

∣∣ < 2
and

∣∣e′ ∩ D′s′−1

∣∣ < 2; also |e′ ∩ Dν | < 2 holds. Moreover, if |e ∩ Dν | ≥ 2, then b′ ∈ Dν and
d′ = b ∈ Dν , and in this case e′ is not present in H because otherwise we would have Cs′−1 = 1.
Thus, by Fact 4, the probability that the random H contains e (resp., e′) is bounded as

Pr
[
e ∈ H|F ′s−1

]
(H0) = p, and Pr

[
e′ ∈ H|F ′s′−1

]
(H0) ≤ p. (11)

Note that the total number of possible ways to choose each of d, d′ is bounded by ν+1 (because
s ≤ s′ ≤ ν and |D′ν | = ν + 1) and that there are |Aν ∪ Dν | ≤ ν2 + ν + 1 ways to choose each
of b, b′ (because Aν ≤ ν2 by assumption). Thus, from (11) and p = O(1/(n ln n)), we obtain

Pr
[E(s, s′)|F ′0

]
(H0) ≤ (ν2 + ν + 1)2(ν + 1)2p2 = o(ν6/n2)

Hence, by the union bound, it holds that

Pr
[
Cν = 1|F ′0

]
(H0) ≤ Pr

[∃s < s′ ∈ [ν] [E(s, s′) occurs] | F ′0
]
(H0) ≤ ν2 ·o(ν6/n2) ≤ ν8/n2.

This proves the first assertion.
Next consider the case π = (1, 3). For 1 ≤ s′ ≤ ν, let E(s′) be the event that Cs′−1 = 0

and Cs′ = 1. Let a′ = minAs′ ; then a′ 6∈ Aν ∪ Dν , because Cs′−1 = 0. If E(s′) occurs, then
e′ = {a′, b′, d′} is present in the random graph for some d′ ∈ D′s′−1 and b′ ∈ Aν ∪Dν . Then we
have

∣∣e′ ∩ D′s′−1

∣∣ < 2. Moreover, if |e′ ∩ Dν | = 2, then d′ = 1 and b′ ∈ Dν , because Cs′−1 = 0;
but then e′ is not present, because otherwise the process from (1, 2) would have included a′ into
Aν ∪ Dν . Furthermore, if |e′ ∩ Dν | < 2, then by Fact 4, we have Pr

[
e′ ∈ H|F ′s−1

]
(H0) = p.

Thus, in any case, it holds that

Pr
[
e′ ∈ H|F ′s−1

]
(H0) ≤ p. (12)

Now because the number of ways to choose each of d′ is bounded by ν + 1, and as there are
|Aν ∪ Dν | choices for b, b′, from p = O(1/(n ln n)) and (12), we have

Pr
[E(s′)|F ′0

]
(H0) ≤ Pr

[E(s′)|F ′0
]
(H0) ≤ (ν2 + ν + 1)(ν + 1)p = o(ν3/n).

14

Finally, taking the union bound over s′ ≤ ν, we get

Pr
[
Cν = 1|F ′0

]
(H0) ≤ Pr

[∃s′ ∈ [ν] [E(s′) occurs] |F ′0
]
(H0) ≤ ν · o(ν3/n) ≤ ν4/n,

as desired. ¤

Lemma 12. We have Pr
[
Aν > ν2

]
= o(n−4).

Proof. We have Aν ≤ ∑ν
t=1 Xt. Furthermore, by Fact 3 the variable Xt given Ft−1 is

dominated by
X̃t

def= Bin(n, 1− (1− p)t),

where X̃1, X̃2, . . . are mutually independent.
As a consequence,

Pr
[Aν > ν2

] ≤ Pr

[
ν∑

t=1

X̃t > ν2

]
. (13)

Furthermore,

E

[
ν∑

t=1

X̃t

]
=

ν∑

t=1

n(1− (1− p)t) ≤ νn(1− (1− p)ν)

≤ (1 + o(1))ν2np = o(ν2). (14)

Combining (13) and (14) with the Chernoff bound (1), the bound of the lemma is shown. ¤

Lemma 13. Let π ∈ {(1, 3), (3, 4)}. Let H0 be any hypergraph such that T [H0] ≥ ν and
Aν [H0] ≤ ν2. Then we have

Pr
[
T ′ ≥ ν ∧ Cν = 0 |F ′0

]
(H0) ≤ Pr

[
T (3,4) ≥ ν

]
.

Proof. Since T ′ is the least time t such that A′t = 0, we have T ′ ≥ ν iff A′t > 0 for all t ∈ [ν].
Recall that A′t = A′t−1 +X ′

t−1; hence, T ′ ≥ ν implies that X ′
t ≥ 1 for all t ∈ [ν]. On the other

hand, Cν = 0 implies Ct−1 = 0 for all t ∈ [ν]. Thus, T ′ ≥ ν ∧Cν = 0 implies (1−Ct−1)X ′
t ≥ 1

for all t ∈ [ν]. In other words, letting

A′′t = A′′t−1 + (1− Ct−1)X ′
t − 1,

we see that

Pr
[
T ′ ≥ ν ∧ Cν = 0 | F ′0

]
(H0) ≤ Pr

[∀t ∈ [ν]
[
A′′t > 0

] | F ′0
]
(H0).

Thus, in order to prove the lemma, it suffices to show that

Pr
[∀t ∈ [ν]

[
A′′t > 0

] | F ′0
]
(H0) ≤ Pr [∀t ∈ [ν] [At > 0]] = Pr [T ≥ ν] (15)

since Pr [T ≥ ν] = Pr
[
T (3,4) ≥ ν

]
by symmetry.

15

For simplifying expressions, we let µ denote the probability measure Pr [· | F ′0] (H0). Now
we are going to prove that

µ
[
A′′t ≥ a | ∀s ∈ [t− 1]

[
A′′s > 0

]] ≤ Pr [At ≥ a | ∀s ∈ [t− 1] [As > 0]] (16)

holds for any t, 0 ≤ t ≤ ν, and for any integer a ≥ 1.
Fix any a ≥ 1. We proceed by induction on t. As A′′0 = A0 = 1, (16) is trivial for t = 0.

Consider any t ≥ 1. Note that given A′′t−1 = b > 1 we have A′′t ≥ a iff (1−Ct−1)X ′
t ≥ a− b+1.

Thus, it holds that

µ
[
A′′t ≥ a | ∀s ∈ [t− 1]

[
A′′s > 0

]]

=
∑

1≤b≤n

µ
[
A′′t ≥ a |A′′t−1 = b

] · µ [
A′′t−1 = b | ∀s ∈ [t− 2]

[
A′′s > 0

]]

=
∑

1≤b≤n

µ
[
(1− Ct−1)X ′

t = a− b + 1 |A′′t−1 = b
] · µ

[
A′′t−1 = b | ∀s ∈ [t− 2]

[
A′′s > 0

]]
.

(17)

Here (and in the following) we omit unrelated conditions and write, e.g., µ
[
A′′t ≥ a|A′′t−1 = b

]

instead of µ
[
A′′t ≥ a|A′′t−1 = b ∧ ∀s ∈ [t− 2] [A′′s > 0]

]
.

By Fact 5 the variable (1−Ct−1)X ′
t given A′′t = b is stochastically dominated by a binomial

distribution Bin(n− t− b, 1− (1− p)t). By comparison, Fact 3 shows that given At−1 = b the
variable Xt has a binomial distribution Bin(n− t− b, 1− (1− p)t). Hence, Xt given At−1 = b

dominates (1− Ct−1)X ′
t given A′′t−1 = b. Therefore, (17) yields

µ
[
A′′t ≥ a | ∀s ∈ [t− 1]

[
A′′s > 0

]]

≤
∑

1≤b≤n

Pr [Xt ≥ a− b + 1 |At−1 = b] · µ
[
A′′t−1 = b | ∀s ∈ [t− 2]

[
A′′s > 0

]]

=
∑

1≤b≤n

Pr [At ≥ a |At−1 = b] · µ
[
A′′t−1 = b | ∀s ∈ [t− 2]A′′s > 0

]
. (18)

By induction, At−1 given As > 0 for all s ∈ [t− 2] dominates A′′t−1 given A′′s > 0 for all
s ∈ [t− 2]. Furthermore, the function b 7→ Pr [At ≥ a|At−1 = b] is monotonically increasing.
Combining these two facts with (18), we obtain

µ
[
A′′t ≥ a | ∀s ∈ [t− 1]

[
A′′s > 0

]]

≤
∑

1≤b≤n

Pr [At ≥ a |At−1 = b] · Pr [At−1 = b | ∀s ∈ [t− 2] [As > 0]]

= Pr [At ≥ a | ∀s ∈ [t− 1] [As > 0]] .

This proves (16) for all t ∈ [ν]. Then using the fact that A′′0 = A0 = 1, we can show

Pr
[∀s ∈ [t]

[
A′′s > 0

] | F ′0
]
(H0) ≤ Pr [∀s ∈ [t] [As > 0]] ,

for any t ∈ [ν]. In particular, our goal (15) is obtained as its special case. ¤

Now we assume that δ > 0 is the one promised by Proposition 6 for any constant c > 0.25
and p = c/(n ln n).

16

Lemma 14. We have

Pr [both (1, 2) and (3, 4) are good] ≤ (1 + o(1)) (Pr [(1, 2) is good])2 .

Proof. Note first that

Pr [(1, 2), (3, 4) are good]

= Pr
[
(3, 4) is good | (1, 2) is good ∧Aν ≤ ν2

] · Pr [(1, 2) is good] + Pr
[
Aν > ν2

]
.

Since Pr
[Aν > ν2

]
= o(n−4) (from Lemma 12) and Pr [(3, 4) is good] = Ω(nδ−2) (from Corol-

lary 10 and by symmetry), we see that Pr
[Aν > ν2

]
= o

(
(Pr [(1, 2) is good])2

)
. Thus, we

just need to prove

Pr
[
(3, 4) is good | (1, 2) is good ∧Aν ≤ ν2

] ≤ (1 + o(1)) Pr [(3, 4) is good] . (19)

Let π = (3, 4). In order to establish (19), it suffices to prove that for any hypergraph H0

such that T [H0] ≥ ν (i.e., (1, 2) is good in H0) and Aν ≤ ν2, we have

Pr
[
T ′ ≥ ν | F ′0

]
(H0) ≤ (1 + o(1)) · Pr

[
T (3,4) ≥ ν

]
. (20)

Fix any such H0. Then

Pr
[
T ′ ≥ ν | F ′0

]
(H0) ≤ Pr

[
Cν = 1|F ′0

]
(H0) + Pr

[
T ′ ≥ ν ∧ Cν = 0 | F ′0

]
(H0). (21)

Since we are assuming that Pr
[
T (3,4) ≥ ν

]
= Pr [(3, 4) is good] = Ω

(
nδ−2

)
, Lemma 11 yields

that
Pr

[
Cν = 1|F ′0

]
(H0) ≤ ν8n−2 = o

(
Pr

[
T (3,4) ≥ ν

])
. (22)

In addition, Lemma 13 shows that

Pr
[
T ′ ≥ ν ∧ Cν = 0|F ′0

]
(H0) ≤ Pr

[
T (3,4) ≥ ν

]
(23)

Finally, combining (21), (22), and (23), we obtain (20), thereby completing the proof. ¤

Lemma 15. We have

Pr [both (1, 2) and (1, 3) are good] ≤ o(n) (Pr [(1, 2) is good])2 .

Proof. We use a similar argument as in the proof of Lemma 14. As in the that proof, we have

Pr [(1, 2), (1, 3) are good]

= Pr
[
(1, 3) is good | (1, 2) is good ∧Aν ≤ ν2

] · Pr [(1, 2) is good] + Pr
[
Aν > ν2

]
.(24)

Now from Lemma 12, it suffices to show that

Pr
[
(1, 3) is good | (1, 2) is good ∧Aν ≤ ν2

] ≤ (1 + o(1))n · Pr [(1, 3) is good] . (25)

17

Let π = (1, 3). To prove (25), we are going to show that for any hypergraph H0 such that
T [H0] ≥ ν (i.e., (1, 2) is good) and Aν ≤ ν2, we have

Pr
[
T ′ ≥ ν|F ′0

]
(H0) ≤ (1 + o(1)) · Pr

[
T (3,4) ≥ ν

]
. (26)

For any such H0, we have

Pr
[
T ′ ≥ ν |F ′0

]
(H0) ≤ Pr

[
Cν = 1 | F ′0

]
(H0) + Pr

[
T ′ ≥ ν ∧ Cν = 0 | F ′0

]
(H0). (27)

Since we are assuming that Pr
[
T (1,3) ≥ ν

]
= Pr [(1, 3) is good] = Ω

(
nδ−2

)
, Lemma 11 yields

Pr
[
Cν = 1|F ′0

]
(H0) ≤ ν4n−1 = o

(
n · Pr

[
T (1,3) ≥ ν

])
. (28)

In addition, Lemma 13 shows that

Pr
[
T ′ ≥ ν ∧ Cν = 0|F ′0

]
(H0) ≤ Pr

[
T (3,4) ≥ ν

]
. (29)

Finally, combining (27), (28) and (29), we obtain (26), thereby completing the proof. ¤

Proof of Proposition 7. Let N be the number of good pairs. We are going to show that
E

[
N2

] ∼ (E [N])2. More specifically, we analyze E [N(N − 1)]. Let W be the set of all pairs
(x, y) ∈ V 2 such that x 6= y. We use (x, y) and (x′, y′) to denote distinct elements of W . Then

E [N(N − 1)] =
∑

(x,y),(x′,y′)∈W

Pr [both (x, y), (x′, y′) are good] . (30)

We split the sum into two cases where

• the summands (x, y), (x′, y′) are pairwise distinct, that is, |{x, y, x′, y′}| = 4, and
• the summands (x, y), (x′, y′) satisfy |{x, y, x′, y′}| = 3.
There are n(n−1)(n−2)(n−3) possibilities for (x, y, x′, y′) in the first case, and 2n(n−1)(n−2)
possibilities in the second case. Since the hypergraph distribution H : H(n, p) is symmetric
with respect to permutations of the vertices, in the first case we have

Pr [both (x, y), (x′, y′) are good] = Pr [both (1, 2), (3, 4) are good] ,

and in the second case we get

Pr [both (x, y), (x′, y′) are good] = Pr [both (1, 2), (1, 3) are good] .

Hence, we can rephrase (30) as

E [N(N − 1)] = n(n− 1)(n− 2)(n− 3) · Pr [both (1, 2), (3, 4) are good]

+2n(n− 1)(n− 2)Pr [both (1, 2), (1, 3) are good] .

Then invoking Lemmas 14 and 15, we thus obtain

E [N(N − 1)] ≤ (1 + o(1))n(n− 1)(n− 2)(n− 3) (Pr [(1, 2) is good])2

+o
(
n2(n− 1)(n− 2) (Pr [(1, 2) is good])2

)

≤ (1 + o(1))
(
n(n− 1)Pr [(1, 2) is good]

)2 = (1 + o(1)) (E [N])2 .

18

As a consequence, we get Var [N] = E
[
N2

] − (E [N])2 = o
(
(E [N])2

)
. Therefore, for any

γ > 0, Chebyshev’s inequality shows that

Pr [N < (1− γ)E [N]] ≤ Var [N]
(γE [N])2

=
o(1)
γ2

= o(1).

From this, the proposition follows. ¤

5 Computing a Propagation Sequence

5.1 Algorithm and an Outline of its Analysis

We show the algorithm A claimed in Theorem 2. For any constant ε > 0 and for any p > (0.25+
ε)/(n lnn), our algorithm A finds a propagation sequence of a given hypergraph H : H(n, p)
w.h.p.; furthermore, its expected running time is linear in the number of edges of H.

We first describe our algorithm and give an outline of its analysis. The detail analysis will
be given in the next subsection. Throughout this section, we fix p = c/(n ln n) for any constant
c > 0.25; this lose no generality for proving the theorem because for any random hypergraph
H ′ : H(n, p′) with p′ > p, we may consider a graph H following H : H(n, p) by removing each
edge of H with probability 1−p/p′, and on this H, the algorithm finds a propagation sequence
w.h.p., which can be used as a propagation sequence of H ′.

Figure 5.1 states the outline of the algorithm A. The algorithm’s execution is divided into
three steps. At the first step, a random hash table HashTable is constructed. This table is
used, for any given pair of vertices x and y, to check whether it is positive, namely, there exists
an edge in E containing x and y. (If positive, we also need to enumerate all such edges; but
this information can be added at the corresponding entry of each positive pair by a linked
list.) The second step is based on the propagation process we introduced in section 2. In
the second step, the algorithm searches for a successful initial pair such that the propagation
process succeeds, that is, it continues until to time n− 1. Let D, A, and N be variables for the
current set of dead, active, and neutral vertices respectively. Note that we only need to start
from a pair of vertices that appear in some edge of E, which we call an initial edge. When
a successful initial edge is found, then the algorithm proceeds to the third step to compute
an propagation sequence starting from this edge. For this, we simply need to collect all edges
recorded as path edge candidates during the successful propagation process.

Clearly this algorithm finds a propagation sequence if the given graph is propagation con-
nected. As guaranteed by Theorem 1 (2), a random H = (V,E) : H(n, p) is propagation
connected w.h.p., and hence, the algorithm on H succeeds to find its propagation sequence
w.h.p. Thus, our task is to show that the expected running time of the algorithm is O(|E|).

We explain some important points for showing the linear expected running time. In the
following consider any random hypergraph H : H(n, p). Let R(H) denote the running time of
the algorithm on H. Note that R(H) is a random variable depending on both H : H(n, p) and
the algorithm’s randomness used for constructing HashTable. Note that the number of edges

19

|E| itself is a random variable. What we will show is precisely that

∃calg, ∀m
[

E
[
R(H)

∣∣ |E| = m
] ≤ calg max

(
m,

cn2

ln n

)]
(31)

holds. Note that |E| is very well concentrated in Θ(cn2/ ln n). Thus, this technical goal (31)
is sufficient for the theorem. In the following, we will simply use m to denote the number of
edges of a given H.

Let us go through the algorithm to check what is necessary to show (31). Note first that
the time bound for the third step of the algorithm can be subsumed by the one for the second
step. Thus, we consider only the first and the second steps of the algorithm.

The first step of the algorithm is for preparing an appropriate hash table for checking
whether a given pair of vertices is positive. Note that there are 3m positive pairs. Thus,
by using a standard pair-wise independent random hash function family (see, e.g., [MU05,
Theorem 13.11]), we can construct a ‘perfect’ random hash table with O(m) entries in O(m)
time on average. Here by ‘perfect’ we mean a hash table with which each query can be
answered in constant time.

Now consider the second step, the main step of the algorithm. For any e ∈ E, we consider
the running time Re for simulating the propagation process starting from (a pair of vertices
of) e. Let Ae and Ce denote the number of vertices that get active and that of edges that are
examined at (∗) of the algorithm during the process starting from e. Note that # of all pairs
(x, y) that are examined during the process is bounded by (Ae)2. Hence, it is easy to see that
Re is bounded by O(max(A2

e, Ce)). This yields a trivial bound Re = O(max(m,n2)) since we
have Ae ≤ n and Ce ≤ m. We would like to show that it is much smaller on average; more
specifically, E [Re] = O(m) if the process succeeds from e and E [Re] = O(1) otherwise.

Recall that if an initial edge (and the initial pair that it defines) is ‘good’ and the propagation
process from the edge lasts more than ν steps, then most likely it succeeds to reach to time
n − 1 and a propagation sequence is obtained. On the other hand, the probability of hitting
a good initial pair is small, and in fact, the process stops much earlier for most of the ‘bad’
initial pairs. We use this to show that E [Re] = O(1) if the process does not succeed.

For this analysis, we consider the following four cases determined by initial edge e: (i) the
process (from e) terminates in two steps, (ii) the process (from e) terminates in b

√
lnn/c(n)c

steps, (iii) the process (from e) succeeds, and (iv) the other case. Let E1, . . . , E4 denote the
set of initial edges for which each of these four cases occurs respectively.

Clearly, Re = O(1) for e ∈ E1. On the other hand, we can show that the probability that
e 6∈ E1 is bounded by O(c/ ln n). This shows that E [Re] for e ∈ E2 is O(1). We then consider
initial edges e ∈ E4. It is possible that the process lasts more than (lnn)3 steps; but from
Lemma 5, such probability is quite small, and this case can be ignored in our average-case
running time analysis. Thus, we may assume that the process terminates in (lnn)3 steps,
which can be simulated in O((lnn)6) time. On the other hand, it is also possible to show that
the probability that e 6∈ E2 is bounded by o(1/(lnn)d) for any d > 0. This shows that E [Re]
for e ∈ E4 is also O(1).

Finally, consider the case e ∈ E3. That is, the case where the propagation process succeeds
from e. Note that the algorithm immediately proceeds to step (3) as soon as any successful

20

initial edge is found; thus, we need to consider the time for simulating one successful process.
From our trivial bound, we have Re = O(max(m,n2)), which is a bit large to bound by m (since
m = O(cn2/ lnn) with high probability). In order to reduce this time, we split our simulation
of the propagation process into two stages. The first one is until time (n/

√
ln n). Since |D| ≤

n/
√

lnn during this stage, the simulation of this stage can be done in time O(max(m,n2/ ln n)).
In the second stage, i.e., after the (n/

√
lnn)th step of the process, we switch our strategy

of obtaining edges examined at (∗); for any active vertex x, instead of searching for edges
containing a pair of vertices x, y for each dead vertex y, we use another table and examine all
edges of E containing x. Note that the number of edge candidates (for each active vertex) is
on average cn/ lnn; in fact, the case that there exists some active vertex that appears in more
than 2cn/ ln n edges occurs with very small probability, and it can be ignored. This proves
that the second stage can be simulated in time O(cn2/ lnn). Hence, altogether the process
from e can be simulated in time O(max(m, cn2/ ln n)) on average.

5.2 Detail running time analysis

We give detail running time analysis on the second step of the algorithm. We fix n to any
sufficiently large number, and consider the execution of our algorithm on a random input
H : H(n, p). We will use notations E, Ae, Ce, and E1, . . . , E4 as defined in the previous
subsection.

We introduce some notation. Let oe(1) denote any positive function that is bounded by
1/e(n) with some subexponentially growing function e(n). Note that the algorithm’s running
time is bounded (even in the worst-case) by some polynomial in n. Thus, for discussing the
average case running time, we may ignore any event that occurs with probability oe(1). We
summarize such events as follows. (We omit their proofs because Fact 8 is from Lemma 5, and
the other facts are easy to show by using the Chernoff bound.)

Fact 6. There exist constants c1 and c2 such that

Pr
[

c1
cn2

ln n
≤ |E| ≤ c2

cn2

lnn

]
= 1− oe(1).

Fact 7. For any vertex v ∈ V , let Nv denote the number of edges containing v. Then we have

Pr
[
∃v ∈ V

[
Nv ≥ cn

lnn

]]
= oe(1).

Fact 8.

Pr
[∃e ∈ E

[
Ce > (lnn)3 and the propagation process from e fails

]]
= oe(1).

Now we prove our technical goal, namely (31). Consider any m such that c1cn
2/ lnn ≤ m ≤

c2cn
2/ lnn holds for the constants c1, c2 of Fact 6. We estimate the expectation of T (F) under

the condition that |E| = m.
As explained in the previous subsection, for the set of 3m positive pairs, a perfect hash table

of size O(m) can be constructed in O(m) time on average. Thus, we may assume that the

21

expected time for the step (1) of the algorithm to create a perfect hash table for HashTable is
O(m). Thus, for proving (31), it suffices to show that the expected running time of the step
(2) of the algorithm is O(m) assuming that HashTable is a perfect hash table and it can be
used to check whether a given pair of vertices is positive or not in constant time.

Recall that Te is the time for simulating the propagation process starting from edge e. Thus,
our goal is to show that E

[∑
e∈E Te

]
is O(max(m, cn2/ lnn)). As explained in the previous

subsection, we estimate E
[∑

e∈E Te

]
considering the four cases in the following way1:

E

[∑

e∈E

Te

]
=

∑

e∈E

∑

i=1,2,4

E [Te|e ∈ Ei] · Pr [e ∈ Ei]

+ E
[
Te0

∣∣ the process succeeds from e0

]

where by symmetry we may choose e0 as any edge in E. Below we give lemmas showing the
desired bounds for these four cases.

First consider the case that the exploration succeeds from e0. In this case, by using Fact 6,
it is easy to show the following bound.

Lemma 16. Suppose that the propagation process succeeds from edge e0. Then we have
E [Te0] = O(cn2/ ln n), where Te0 is the time for simulating this process following the imple-
mentation explained in the previous subsection.

Finally, we show the following bounds for the other three failed cases.

Lemma 17. Let Ei be either E1, E2, or E4. Then for any e ∈ E, we have

E [Te|e ∈ Ei] · Pr [e ∈ Ei] = O(1). (32)

Proof. Let e denote any edge in E. First we estimate probabilities Pr [e ∈ Ei] for i ∈ {1, 2, 4}
as follows.

Claim 1.(1) Pr [e ∈ E2] ≤ Pr [e 6∈ E1] < 3 ln n/c.
(2) Pr [e ∈ E4] ≤ Pr [e 6∈ E2] = o(1/(lnn)d) for any d ≥ 1.

We prove the lemma by using these bounds. Since the process from e fails, we may assume
that Ce < n from Fact 8. Hence, we have Ae ≥ Ce/2, which implies that Te = O((Ae)2). Then
the case e ∈ E1 is clear because we have a trivial bound E

[
(Ae)2|e ∈ E1

]
= O(1). Consider

the case e ∈ E2. Again by definition we have (Ae)2 = lnn/c. Hence, from (1) of the above
claim, we have

E[(Ae)2|e ∈ E2] · Pr[e ∈ E2] ≤ ln n

c
· 3c

lnn
= 3.

Finally, consider the case e ∈ E4, that is, the case e 6∈ E1 ∪ E2 ∪ E3. Since e is a failed initial
edge, we may assume from Fact 8 that Ae ≤ (lnn)3. Thus, by using (2) of the above claim,
we have

E[(Ae)2|e ∈ E4] · Pr[e ∈ E4] ≤ (lnn)6 · o
(

1
(lnn)6

)
= o(1).

1For simplifying expressions/statements, we treat E as a nonrandom variable in the following analysis.

Modifying this analysis to the one with precise expressions/statements is easy, and it is left to the reader.

22

This prove the lemma. ¤

Proof of Proof of Claim 1. (1) Let e = {u, v, w}, and let u and v be the dead and the
active vertices at the 1st step of the process. Then clearly at least one active vertex (i.e., w) is
found, and the process goes to the second step. In this situation, there are three possibilities
to continue to the third step: (i) yet another vertex gets active at the 1st step, (ii) some vertex
gets active by {x, z} at the 2nd step, and (iii) some vertex gets active by {y, z} at the 2nd
step. The probability that each case occurs is bounded by Pr [Bin(n, p) ≥ 1], which is bounded
by

Pr [Bin(n, p) ≥ 1] = 1− (1− p)n ≤ np =
c

lnn
.

This implies the bound of the lemma.

(2) The argument is similar to the one for proving the part (1) of the main theorem. Let
t0 = b

√
ln n/cc + 1. We note that if |Ae| ≥ t0, then at least t0 edges are found by checking

at most nt0(t0 + 1)/2 triples. This probability is at most Pr [Bin(nt0(t0 + 1)/2, p) ≥ t0] ≤
Pr

[
Bin(nt20, p) ≥ t0

]
. This last probability is bounded by

Pr
[
Bin

(
nt20, p

) ≥ t0
] ≤ Pr

[
t0 ≤ Bin

(
n ln n

c
, p

)
< c′ ln n

]
+Pr

[
Bin

(
n lnn

c
, p

)
≥ c′ ln n

]

for any c′ ≥ 1. Here by taking c′ sufficiently large, we can show that the second term of the
above bound is o(n−1) by the Chernoff bound. On the other hand, the first term is bounded
by

Pr
[

t0 ≤ Bin
(

n ln n

c
, p

)
< c′ ln n

]
≤ (c′ ln n) · Pr

[
Bin

(
n lnn

c
, p

)
= t0

]

≤ (c′ ln n) ·
(

(n lnn)/c

t0

)
pt0(1− p)t0 ,

which can be shown o((lnn)−d) for any d ≥ 1. This proves the bound of the claim. ¤

References

[BCK07] M. Behrisch, A. Coja-Oghlan, M. Kang, Local limit theorems for the giant compo-
nent of random hypergraphs, in Proc. 11th International Workshop RANDOM (AP-
PROX+RANDOM’07), Lecture Notes in Computer Sciecne 4627, 341–352, 2007.

[BO09] R. Berke and M. Onsjö, Propagation connectivity of random hyptergraphs, in Proc.
5th Symposium on Stochastic Algorithms, Foundations and Applications (SAGA’09),
Lecture Notes in Computer Science 5792, 117–126, 2009.

[CMV07] A. Coja-Oghlan, C. Moore, V. Sanwalani, Counting connected graphs and hyper-
graphs via the probabilistic method, Random Structure and Algorithms 31, 288–329,
2007.

23

[CM04] H. Connamacher and M. Molloy, The exact satisfiability threshold for a potentially
intractable random constraint satisfaction problem, in Proc. 45th Annual Symposium
on Foundations of Computer Science (FOCS’04), IEEE, 590–599, 2004.

[D05] R. Durrett, Probability and examples, 3rd edition, 2005.

[DN05] R.W.R. Darling and J.R. Norris, Structure of large random hypergraphs, Ann. App.
Probability 15(1A), 125–152, 2005.

[Fe50] W. Feller, An introduction to probability theory and its applications, Wiley, 1950.

[JLR00] S. Janson, T. ÃLuczak, and A. Ruciński, Random Graphs, Wiley, 2000.

[MU05] M. Mitzenmacher and E. Upfal, Probability and Computing, Randomized Algorithms
and Probabilistic Analysis, Cambridge Univ. Press, 2005.

[Kar90] R.M. Karp, The transitive closure of a random digraph, Random Structures and
Algorithms 1, 73–93, 1990.

[Mol05] M. Molloy, Cores in random hypergraphs and Boolean formulas, Random Structures
and Algorithms 27(1), 124–135, 2005.

24

algorithm A (for computing a propagation sequence);
given H = (V,E) following H(n, p), where V = [n] and we denote E = {e1, . . . , em};
(1) prepare a random hash table HashTable with O(m) entries so that one can search

edges containing a pair of vertices using the pair as a key;
(2) for each initial edge e ∈ E that has not been examined do {

let u, v, w be vertices of the edge e;
D ← {u}; A ← {v}; N ← V − D ∪ A;
// start the propagation process from edge e

while A 6= ∅ and N 6= ∅ do {
x ← any one element of A;
for each y ∈ D do {

use HashTable to search edges containing x and y;
for each one of the obtained edges (∗) do {

z ← the third vertex of the edge;
if z ∈ N then {

save this edge as a candidate path edge;
A ← A ∪ {z}; N ← N − {z};

} }
}
A ← A − {x}; D ← D ∪ {x};

}
if N = ∅ (i.e., the process succeeds) then goto (3);
reset the list of candidate path edges;

} // end of the while loop
report failure;

(3) compute the propagation sequence starting from the ‘successful’ initial edge e

by following all candidate path edges, and output it;
end-procedure.

Figure 1: Outline of Algorithm A

25

