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Abstract

In this paper we propose a new Identity-based certificateless proxy signature transferable to a
chain of proxy signers enabling fine-grained delegation, Authentication and Authorization decou-
pling, and Attributes-based Authorization within the Grid environment without relying on any kind
of PKI certificates, proxy certificates or attribute certificates. Security and performance analysis of
the proposed scheme are also discussed.

1 Introduction

Recently, Grids gained a great interest and a wide adoption among the academia and the industrial envi-
ronment, thereby, resulting in an unprecedented growth in the number of grid computing users. In order
to be able to use the grid, users must possess a valid grid credential. Generally, acquiring such a creden-
tial is time consuming, and sometimes requires future users to go through an in-person interview, which
can be discouraging in some areas without a Grid Certificate Authority’s representative or Certificate
Registration authority. Also, while the number of Grid users is exploding, Grid administrators are facing
a real concern in securely distributing, managing users credentials and revoking the compromised ones.
Subsequently, Public Key Infrastructure (PKI) certificates and proxy certificates, which are the core
components of the de facto standard GSI1 security framework — in providing: mutual authentication,
Single-Sign-On and delegation — are becoming an impediment to the Grid’s scalability.

These shortcomings have led many researchers to propose new certificate-free security frameworks
that still provide the required mutual authentication, Single-Sign-On and delegation. Some of these
proposed schemes were based on the concept of Identity-Based Cryptography using pairings like in the
works of [4, 13, 10, 20, 16, 14]. In this new paradigm, the problem of acquiring an authentic copy of a
given user’s public key to send him an encrypted traffic is no more part of the confidential traffic sender’s
responsibility. Instead, this problem is shifted to the traffic recipient side, thereby freeing the sender
from any such burden. In fact, the public key of any given user will be any of his identifying strings
such an e-mail address, or an IP address, etc. , which will remove the need to rely on PKI certificates
in order to guarantee a genuine binding between a user identity and his randomly-generated public key.
In addition, it will be the duty of the encrypted traffic recipient to acquire the corresponding decryption
key or private key associated with the string used by the traffic sender as the recipient’s public key. In
identity-Based Cryptography systems, there will be a Trusted third-party Authority (TA) or Private
Key Generator (PKG) which will be entitled to issue private keys for users after authenticating them
and ensuring that their identities conform with the identifying string used as public key. This TA or
PKG is the equivalent to the Certificate Authority (CA) in PKI which certifies the binding between a
given user identity and his public key.

In conjunction with Identity-Based Cryptography, another key concept inline with the motivation to
replace the standard delegation by means of proxy certificate is the signing capability delegation or proxy
signature [15]. Indeed, being able to produce a genuine signature on behalf of an original signer without
the need to share one’s private key was the driving motivation behind the proxy signature concept.
Generally, the original signer sends to his designated proxy signer a special signature, which can be used
in turn by the intended proxy signer to compute a proxy signing key. It is to be noted that a modified
verification equation rather than the one used to validate the original signer signature is used to check
the authenticity of the proxy signer’s signature. Moreover, any proxy signature’s verifier convinced with
the signature authenticity can assume that the signer is a designated and entrusted proxy signer by the
original signer.

In this paper, we propose a novel authorization scheme [8] for the grid environment, through the use
of Identity-Based cryptography and proxy signature concept. Although the integration of Identity-Based
Cryptography (IDBC) within the grid security framework has already been proposed in literature, to
the best of our knowledge we are the first to propose the use of the proxy signature concept within the

1GSI uses X.509 standard for certificates and proxy certificates
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grid environment to enhance attribute-based authorization systems. Traditionally in such an attribute-
based authorization system2, users are required to acquire from a grid trusted Attribute Authority (like
VOMS or CAS) a valid attribute certificate or attribute token, asserting in a certified manner their
attributes, the roles they hold and their groups membership. Then, in order to access a given resource,
the users push their attribute certificates (or their proxy certificates after embedding into it the attribute
certificate) to the resource authorization manager which will make the authorization decision based on
the presented attribute token. Still, our proposed scheme, lets users push their attributes to the resource
authorization manager but without any use of attribute or proxy certificates. In fact, using a special
variation of proxy signature, called warrant-based proxy signature scheme (kindly refer to section 2.3),
we make the grid Attribute Authority, as an original signer, delegate his signing capability to any given
authenticated user, as a designated proxy signer. This delegation will be performed under a tamper-
proof warrant enclosing the user attributes and a validity time frame, which will be presented with
any computed proxy signature as an authenticity requirement. Therefore, a resource authorization
manager convinced by the warrant-based proxy signature authenticity can make authorization decisions
based on the attributes carried within the presented signature’s warrant. Furthermore, by doing so,
we also achieve authorization and authentication decoupling. In fact, the authentication process will be
carried out by the grid Attribute Authority which will enforce users’ authentication before delegating his
signing capability to them. Then, if we make the Attribute Authority include into the proxy signature
warrant the authenticated user identity, the authorization process can be carried out by the resources’
authorization manager, without further user authentication. This is due to the fact that validating a
given warrant-based proxy signature that includes the involved parties identities (the proxy signer and
the original signer identities) is equivalent to checking whether the proxy signer was approved by the
original signer to be a valid proxy signer on his behalf, thereby implying the identity of the proxy signer
being already authenticated by the original signer.

In addition, we enhanced the proxy delegation scheme, by allowing the proxy signing capability to be
transferred and re-delegated to other designated proxy signers. This allows us to create a proxy signing
delegation chain similar to the delegation chain with proxy certificates. To the best of our knowledge
we are the first to propose a secure transferable proxy signature.

Our implementation of the proposed scheme, shows satisfying results (kindly refer to section 5.3)
when considering a proxy delegation chain up to 40 nodes long, in terms of computational and bandwidth
overhead.

The remainder of this paper is organized as follows. First, a review of the related work is given
in section 2. Subsequently, in section 3, we explain the main motivations and merits of the proposed
Certificateless Identity-Based Proxy signature scheme within the Grid environment. Then, in section 4,
we introduce our proposed scheme, which include a description of the initial system setup, the private
and public key establishment, and how proxy signature generation and verification are performed. After
that, we provide, in section 5, an analysis of our proposed scheme. Lastly, section 6 concludes this work.

2 Related work

In this section, a review of the related work and building blocks of our proposed scheme is given. First,
Identity-Based Cryptography including Hierarchical Identity-Based Cryptography is introduced. Then,
Certificateless Public Key Cryptography including Hierarchical Certificateless public Key Cryptography
is presented. Finally, Proxy Signing Delegation including certificateless warrant-based proxy signing is
exposed.

2.1 Identity-based Cryptography

In Identity-Based Cryptography (IDBC) [14, 12, 3, 7] systems, any user’s identifying string (like his e-
mail or IP address) can be used as a public key. The corresponding private key is retrieved from a trusted

2we consider here only push-based authorization
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Figure 1: Identity Based Cryptography in mail confidentiality use

third party, called Private Key Generator (PKG). The PKG is responsible for extracting user’s private
keys through the use of a kept secret master key. It is to be noted that the extracted private keys should
be delivered to their respective users over a secure and authenticated communication channel, to avoid
keys disclosure. In addition, the PKG enforces user’s authentication, prior to private key extractions.
To illustrate the properties of IDBC, let us assume that a user Alice wants to send an encrypted mail
to another user Bob at his e-mail address: bob@xy.com. As depicted in figure 1, Alice needs to know,
in addition to Bob’s e-mail address, his PKG publicly published system parameters, in order to encrypt
the e-mail. When Bob receives the encrypted mail, he contacts his PKG and requests the private key
corresponding to his public key (bob@xy.com—current year in this example). After authenticating Bob,
The PKG uses his master key to extract Bob’s private key and sends it back in a secure way to Bob,
who can then read his e-mail. In this example, we can see that the IDBC scheme alleviates Alice from
the burden of getting an authentic copy of Bob’s public key as being required in standard Public Key
Infrastructure based systems. Therefore IDBC transforms the problem of public key distribution (in
PKI) to the secure distribution of private keys (key extraction by the PKG) corresponding to any user
identifying string like the user’s e-mail address. . . . In addition, key expiration in IDBC is straightforward.
As illustrated in the previous example (see figure 1), Bob can use his private key (corresponding to
bob@xy.com—current year) only during the current year. Therefore, Once a year Bob needs to acquire
a new private key from the PKG. More granularity can be set by adding current year—current month
to Bob’s e-mail address as his public key. Thus, resulting in a monthly refreshed key system. The main
advantage with IDBC key revocation 3 is that Alice is no more required to obtain a new certificate from
Bob every time he refreshes his keys.

The concept of IDBC was first introduced, in 1984, by Adi Shamir to simplify certificate management
in e-mail systems. But, the first fully functional and practical IDBC system is due to the efforts of Boneh
and Franklin [3] who successfully proposed an IBE using bilinear map4 (for a mathematical definition
of bilinear pairing, please refer to section 4) between two groups. In Boneh and Franklin’s proposed
scheme, all users are required to contact and authenticate with a single and unique PKG in order to have
their private keys issued. This can lead to performance degradation, especially in large scale deployment
scenario like in the Grid. In fact, If we consider that extracting private keys is computationally expensive
[6] and that PKG is responsible for verifying users’ identities before delivering the private keys (over
secure channels with the intended users), it is obvious that the PKG will become a bottleneck. In
order to address this performance shortcoming, Gentry and Silverberg came up with a fully Hierarchical

3here key revocation through key expiration
4they used the Weil pairing on elliptic curve as example of such a map
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Identity-Based Encryption and Signature scheme (HIBE and HIBS) [6]. In their proposed HIBE and

(a) Gentry-Silverberg HIBE/HIBS (b) Hierarchical CL-PKC. (Yi = x0Xi = x0xiP )

Figure 2: Key establishment in Gentry-Silverberg HIBE/HIBS and in Hierarchical CL-PKC.

HIBS scheme, a root or system PKG distributes the workload by delegating private key generation and
identity authentication to lower-level PKGs or sub-PKGs, which are organized in a tree-like hierarchy
(see figure 2a). At each level of the tree, a sub-PKG uses its acquired private key, as a master key
(like in Boneh and Franklin scheme), and extracts private keys for their child sub-PKGs. For instance,
as depicted in figure 2a, the sub-PKG with the identity ID1, upon receiving his private key D1 from
his parent (the root-PKG), extracts the private key D2 for his child: the sub-PKG having ID2 as an
identity. It is to be noted that in HIBE and HIBS there is only a unique set of system parameters which
are generated and publicly published by the root PKG (like in the Boneh and Franklin scheme). All the
sub-PKGs below the root level do not generate any set of system parameters. Instead, they use the set
of system parameters generated by the root PKG. Also, as one can see in the example of figure 2a, each
parent have access to the private keys of the sub-PKGs situated below them. This property, is called
key escrow and is inherent to identity-based cryptosystems.

2.2 Certificateless Public Key cryptography

The Certificateless Public Key Cryptography (CL-PKC) [1] is a model for using public key cryptography
without requiring the use of certificates (as in PKI) and yet do not suffer from the built-in key escrow
shortcoming of Identity Based Cryptography. The CL-PKC scheme owes much to the Boneh and Franklin
proposed scheme [3] but with the introduction of some modifications which obviates the hindering key
escrow property. In fact, CL-PKC still make use of a trusted third party, for key generation like the
PKG in Boneh and Franklin scheme, with the exception that the CL-PKC ’s PKG has no more access
to entities private keys. For instance, let us consider a user Bob with an identity IDB (like in the
previous section’s example IDB is a well chosen identifying string for Bob), to illustrate public/private
keys generation within the CL-PKC scheme. After a successful authentication procedure with the PKG,
Bob is supplied with a partial private key (instead of a private key like in the original Boneh and franklin
scheme) DB which the PKG computes from the identifier IDB and a master Key. Then, Bob combines
his partial private key DB with some secret information xB to generate his actual private key SB .
Therefore, Bob’s private key SB is no more available to the PKG, which eliminates the key escrow from
the system. It is to be noted, that similarly to Boneh and Franklin scheme, partial private keys have
to be delivered to their intended users over an authenticated and confidential communication channel.
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Also, Bob combines his secret information xB (the same used for SB generation) with the system’s
parameters (publicly published by the PKG) to generate his public key PB . This latter can be made
available to other users by transmitting it along with messages, especially in a signing application, or
by placing it in a public directory [1]. Unlike PKI, no further security mechanisms like certificates are
applied to protect public keys in CL-PKC. For example, in order to encrypt a message to Bob or verify
a signature from Bob, other users makes use of both Bob’s public key PB and Bob’s identifying string
IDB for encryption and signatures verification. A formal and full description of the CL-PKC encryption
and signing procedures can be found in [1].

Similarly, as stated in the previous section, when considering a large scale deployment, like in the
grid environment, the PKG most likely will become a bottleneck. Thus, the authors of [1] proposed a
hierarchical CL-PKC (HCL-PKC) similar to the Gentry and Silverberg HIBE/HIBS. In HCL-PKC the
system PKG or root PKG distributes the load by delegating the partial private keys extraction and
identity authentication to lower-level PKGs or sub-PKGs. Like in HIBS/HIBE, sub-PKGs are organized
in a tree-like fashion with the system’s PKG as its root. The sub-figure 2b depicts an example showing
how HCL-PKC’s keying materials are established. By comparing the sub-figures of figure 2, we can
notice the main differences in keying materials distribution between HIBE/HIBS and HCL-PKC and
how key escrow was removed in this latter.

2.3 Proxy signing delegation

The concept of Proxy Signature was first introduced, in 1996, by Mambo, Usuda and Okamoto [15].
The Proxy Signature scheme allows an entity, called original signer, to delegate another entity, called a
proxy signer, the ability to sign messages on its behalf. According to the authorization degree, Proxy
Signatures are classified into three types: full delegation, partial delegation and delegation by warrants
[15]. For example, let us assume that Olga, an original signer, asks Peggy to be her proxy signer and
carry out signing instead of her, and Veronica being a third party trying to verify the authenticity of
the produced signatures.

In full delegation, the proxy signer, Peggy, is given the same signing secret key as the original signer,
Olga. Thus, Peggy can deliberately create the same signature as Olga over any message. This property
leads to the trouble that both Peggy and Olga can repudiate their signature, claiming that the other
signer has created it [15]. In the partial delegation type, a new signing secret, derived from Olga’s signing
key, is given in a secure way to Peggy. The verification of a signature created by Peggy follows a modified
verification equation rather than the one used for Olga’s signature verification. Thus, signatures created
by both Peggy and Olga over a given message are totally different and distinguishable [15]. In this type
of signing’s delegation, the proxy signer, Peggy, after receiving the proxy signing key, will able to sign
any message on behalf of the original signer, Olga, without any restrictions like the approved scope of
messages to be signed or the time period to output a genuine signature. The last delegation type, is
based on the use of a warrant. This latter, for instance, certifies that Peggy is a signer to be entrusted
and that she is the designated proxy signer to sign messages on behalf of the original signer, Olga.
The signing delegation by warrant can be implemented using two approaches. In the first approach,
the warrant is composed of a message part stating the identity of Peggy and the Olga’s signature over
the public key of Peggy. In the second approach, the warrant is composed of message part containing
Peggy’s identity and Olga’s signature over a newly generated public key. The corresponding private key
is securely transmitted to Peggy. In both approaches, the proxy signer Peggy, use the private key in
conjunction with the warrant to produce the proxy signature over a given message.

The authors of [11] proposed a certificateless warrant-based proxy signature scheme, which makes
use of CL-PKC for keys distribution and the second approach of signature delegation by warrant. For
example, after computing public and private keys using CL-PKC scheme, Olga creates a warrant stating
her identity as being the original signer and the identity of Peggy as the designated trusted proxy signer
along with the delegation period and any delegation restrictions. Then, Olga signs the delegation warrant
with her private key5 and sends the signature in a secure way to Peggy. By combining her private key

5here it is the CL-PKC private key
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(a) Using Certificate and Proxy certificate approach (b) Certificateless approach (using our proposed scheme)

Figure 3: A Grid environment use-case

with Olga’s signature over the delegation warrant, Peggy generates the proxy signing key which will be
used to sign messages on behalf of Olga, the original signer. Each time Peggy signs a message on behalf
of Olga, the delegation warrant needs to be added to the proxy signature. In fact, in order to check
the authenticity of Peggy’s proxy signature over a given message, Veronica starts, first, by enforcing the
restrictions stated in the warrant. Then, she uses the public keys of both Olga and Peggy, the warrant
and the system public parameters to verify the authenticity of the proxy signature. Interested readers,
may refer to [11] for the formal description of the proxy signature generation and verification within the
warrant-based proxy signature scheme.

3 Motivations

In this section we will depict the main motivations and advantages behind the adoption of our proposed
scheme (see section 4) compared to the existing standard approaches. In fact, The first and main driving
motivation behind the proposed scheme was to avoid using PKI certificates within the grid environment in
order to alleviate the burden of distributing, managing and using PKI certificates and proxy certificates.
The second intended goal from our scheme, is to offer a flexible, transferable (if permitted), fine-grained
delegation. Also, as far as delegation chain’s validation, we intend to over perform than the traditional
grid X.509 proxy chain creation and validation (see section 5). Finally, our proposed scheme decouples
authentication and authorization. This is done by moving the authentication phase from the resource
level to the VO or campus authentication server –using password-based, certificate-based or any other,
already, in use authentication’s approach. Thus, letting resources to enforce authorization based on
user’s attributes within the VO.

3.1 Certificateless approach

The driving motivation behind our work, was to mitigate the burden of using and maintaining public
key certificates, while still providing Single-Sign-On (SSO) and delegation. Proxy certificates are the
de facto standard in achieving SSO and delegation within the Grid environment. For example, as
illustrated in sub-figure 3a, the user Alice delegates her capabilities to the Meta-scheduler MS, when
submitting her job to be executed on the grid, through the creation of a proxy certificate. In fact, the
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MS, after authenticating and receiving Alice’s job, generates a new pair of public/private key and sends
a Certificate Signing Request (CSR) containing the newly generated public key to Alice. Using her
certificate’s private key, Alice signs the CSR and send it back to the MS. At this point, the MS is in
possession of a valid proxy certificate signed by Alice and then can authenticate and submit Alice’s job
on her behalf for execution on available grid resources or even re-delegate this task to a local-scheduler.
It is to be noted that, at any time, no more intervention from Alice is required once she signed the proxy
certificate for MS.

Similarly, In our proposed scheme we intend to provide SSO and delegation without using any
kind of certificate. As depicted in sub-figure 3b, the same user Alice submits her job to MS like in the
previous example of sub-figure 3a, but instead of any proxy certificate creation, Alice delegate her signing
capability to MS using a certificateless warrant-based proxy signature (refer to section 2.3). At this
point, the MS can act on Alice behalf by signing any message or job request using the proxy signature
scheme. MS can further re-delegate Alice capabilities to the local-scheduler LS1 as shown if sub-figure
3b, by transferring the signing capability on Alice behalf to LS1. To the best of our knowledge, we
are not aware of any work on the literature that addressed a multi-level proxy signature delegation, in
which a proxy signer can further delegate the acquired proxy signing capability from an original signer
to another proxy signer and so forth.

3.2 Fine-grained delegation

In the existing production grids, delegation is performed through the use of proxy certificates. For
example when an Entity B needs to act on behalf of another entity A, B generates a new proxy certificates
having one of the predefined delegation types, and sends it to A to be signed. If A approves the requested
delegation, then A signs with his long term private key the new proxy certificates and sends it back to
B. It is obvious, to note that such kind of delegation is not flexible and is very restrictive. In figure 3a,
for example, job A running on computing node CN1 cannot prevent the sub-job B at domain D2 to
authenticate with the gatekeeper at Domain D3 and access the data repositories.

With our proposed scheme we are owing to target fine-grained and restricted enabled delegation. For
instance as shown in the figure 3b, job A running on the Computing Node CN1 within Alice’s delegation
chain can restrict and fine-tune delegation to sub-job B that will be running on the computing node
CN2. For example, let us consider that job A wants to prevent all the sub-jobs it instantiates in domain
D2 to access the data repositories on domain D3. To do so, job A can include the intended delegation
restrictions and the applicable set of rules or policies to be enforced by the Gatekeeper at domain D3,
within the warrant amending the proxy signature delegation to sub-job B. If this latter tries to access
any resources within domain D3, he will be blocked by its gatekeeper. In fact, in our scheme producing
a proxy signature (in order to authenticate a resource allocation or access) is subject to the content of
all the warrants of the delegation chain entities and their carried restrictions. It is to be noted that it is
the responsibility of the proxy signature verification entity to enforce all warrants specified restrictions
and policies.

3.3 Enhanced delegation’s chain creation and validation

Within the GSI framework it is common that delegation (creation of new proxy certificate) can be
chained [17]. This is due to the fact that, within a grid systems, allocation and access to a resource
can be made either, directly, by a user or, indirectly, by a process acting on a user’s behalf [5]. For
instance, as depicted in figure 3a, the user Alice can delegate her privileges to the meta-scheduler MS,
to allow her submitted job to be executed and scheduled on her behalf. Then, the meta-scheduler
MS re-delegate Alice acquired privileges to the local scheduler LS1 located at Domain D1. LS1, in
turn, lunches Alice job on the computing node CN1 and grant it all Alice capabilities for the data
repositories access at domain D3. Thus, resulting in a chain of a proxy certificates, with respect to the
GSI framework. In order to validate such a proxy delegation chain, The gatekeeper have to check the
validity and authenticity of each proxy certificates up to the public key certificate of the initiating user
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Alice, which can be computationally intensive (due to the use of RSA), especially when the delegation
chain is very long. Also, it is to be noted that the creation of a new proxy certificate, for delegation
purpose, is extremely prohibitive. This is due to the computationally demanding process of generating
fresh RSA public/private keys.

In our proposed scheme, as depicted in figure 3b, the local scheduler LS1 can delegate its acquired
privilege from Alice through the meta-scheduler MS to the job A that will be running on compute node
CN1, by just issuing a delegation signature. Job A, then, can use the delegation signature of LS1 as
an input to either, further generate a new delegation signature to another sub-job B, or to compute the
proxy signing key (refer to section 4) used to sign messages on behalf of LS1. Which enables us to create
the same delegation chain as in the GSI framework. On the other hand, because we are relying on a
form of certificateless public key cryptography in generating signatures and computing keys, the setup
and validation of a delegation chain will be computationally efficient compared to the way it is done
within the GSI framework.

3.4 Authorization and authentication decoupling

In the GSI framework, authorization and authentication are both carried at the resource level. In fact,
at first the resource authenticates the access requesting entity by validating and checking the requesting
entity’s public key certificate or proxy chain certificates. Then an access authorization decision is made
based on the requesting entity distinguished Name (DN) or the embedded attribute certificates within
a proxy certificate.

In our proposed scheme we intend to move the authentication from the resource level, using a
fixed predefined authentication procedure, to the VO Attribute Authority (AA) level. In fact, the
authentication will be carried by the AA, using any suitable authentication procedure (certificate-based,
password-based . . . ). If successfully authenticated, the AA will delegate his signing capabilities to the
corresponding user by issuing him a warrant-based delegation signature (refer to section 4). Hence,
when a resource validates a proxy signature (in our scheme) over a job request, it can be sure that the
job requesting entity is a valid designated proxy signer within a delegation chain acting on behalf of an,
already, authenticated user by the VO’s Attribute Authority. Furthermore, if we make the AA to enclose
the VO attributes of authenticated users within the delegation signature warrant, then the resource after
validating the proxy signature can extract and make authorization decision based on those attributes
(all warrants are parts of generated signatures in our scheme). Also, The carried attributes authenticity
is guaranteed because our proposed scheme takes into consideration all warrants digest (or hash) when
generating delegations or proxy signatures.

4 Proposed Scheme

The building blocks of our proposed Scheme are based on Gentry-Silverberg Hierarchical ID-Based
Cryptography [6], Certificateless Public Key Cryptography [1], and Proxy signature [11] from Bilinear
pairings.

In the remainder of this section, we describe our proposed scheme which consists of five basic proce-
dures or steps. The first two ones, System initial Setup and Root and lower level setup are responsible for
initialization, public and private keys establishment. In the Signing capability delegation step, delegation
of the signing capability of an original signer to a designated proxy signer and how such a delegation is
further transferred to other other proxies is explained. Finally, the Proxy signing and Proxy Signature
verification procedures demonstrate the way to proxy-sign a given message and how its authenticity can
be checked by a verifier. We, also, give a brief definition to bilinear pairings, which is the foundation
to pairing based cryptography and hence to our proposed scheme. Figure 4 illustrates the adopted
architecture and entities involved in our proposed scheme.
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Figure 4: Proposed architectural scheme

4.1 Bilinear pairings

Let G1 and G2 be two cyclic groups having the same order q. In the following, G1 will be denoted
additively whereas G2 will be denoted multiplicatively.

Definition 1 (admissible bilinear pairing). Let G1 and G2 be 2 groups as mentioned above. An admis-
sible bilinear pairing is a map e : G1 ×G1 → G2 which verifies the followings three properties:

• Bilinear: given P,Q, R ∈ G1 we have e(P, Q + R) = e(P,Q) · e(P, R) and e(P + Q, R) = e(P,R) ·
e(Q,R). Hence, for all a, b ∈ Zq, e(aP, bQ) = e(P, Q)ab

• Non degenerate: there exists P ∈ G1 and Q ∈ G1 such that e(P, Q) 6= 1G2

• Computable: given P,Q ∈ G1 we can efficiently compute e(P, Q) ∈ G2.

In practice, the bilinear map e can be implemented using the Weil [3] or the Tate [2] pairings on
elliptic curves over a finite field.

4.2 Security assumptions

The security of our proposed scheme relies on some security assumptions stipulating the hardness in
resolving some computational problems. These latter are the Discrete Logarithm problem (DLP), the
Bilinear Diffie-Hellman problem (BDHP), and the Computational Diffie-Hellman problem (CDHP) [4].
In the following, we give a brief definition of these computational problems.

Let e : G1 ×G1 → G2 be an admissible bilinear pairing, with G1 and G2 being two cyclic groups of
a prime order q (q is k bits long).

DLP: For a given P, aP ∈ G1 find the unknown value of a ∈ Zq

BDHP: For a given P, aP, bP, cP ∈ G1 with x, y, z ∈ Zq being unknown, compute the value of
e(P, P )xyz ∈ G2

CDHP: For a given P, aP, bP ∈ G1 with a, b ∈ Zq being unknown, compute the value of abP ∈ G1.

We assume in our scheme that these problems are intractable in time in polynomial in k.
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4.3 System initial setup

The trusted authority or private key generator (PKG), given a security parameter k, chooses two groups
of a prime order q (q is k bits long): G1 being an additive cyclic group and G2 being a multiplicative
cyclic group. In addition, the PKG chooses an admissible bilinear pairing e : G1 ×G1 → G2, and three
hash functions: H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ × G1 → Zq and H3 : {0, 1}∗ × G2 → Zq. It is to be
noted that H1, H2 and H3 have to be a one way and a collision-resistant hash fuctions, as a system
security requirement. Subsequently, the PKG picks up a random x0 ∈ Zq, which will be kept secret as
a master key, and a random generator P = X0 ∈ G1. Then, the PKG computes Ppub = x0P = Y0, and
publicly publishes the system parameters: param = (G1, G2, e,H1,H2,H3, q, P0), with P0 = 〈X0, Y0〉 as
the PKG’s public key.

4.4 Root and lower level setup

Each entity Ei at a level i (including the Attribute authority AA at level 1) having the identity tuple
(ID1|| . . . ||IDi) (IDA for the AA server) chooses a random value xi ∈ Zq (xA for the AA) and keeps it
as a secret value.

4.4.1 Partial private key extraction

The ancestor Et−1 (including the PKG) of each entity Et at the level t ≥ 1, extracts the partial private
key Dt using his partial private key Dt−1 (previously acquired from his corresponding ancestor) and his
secret value xt−1 as follows:

Qt = H1(ID1 ‖ ID2 ‖ . . . ‖ IDt)

Dt = Dt−1 + xt−1Qt =
t∑

i=1

xi−1Qi

Then, Et−1 sends to each entity Et its partial private key Dt over a secure and authenticated channel.

4.4.2 Private and public key establishment

After receiving his partial private key Dt each node Et computes his private key St = xtDt, and public
key Pt = 〈Xt, Yt〉, with Xt = xtP and Yt = xtPpub = xtx0P = x0Xt. Thereby, we will have:

St = xtDt =
t∑

i=1

xtxi−1Qi (1)

To ensure that the received value of Dt has been correctly computed, Et can check whether the
following equation6 holds:

e(Dt, P ) =
t∏

i=1

e(Qi, Xi−1)

Otherwise, Et asks his ancestor to extract once again the partial private key Dt and resend it back.

4.5 Signing capability delegation

First, the Attribute Authority (AA) starts by delegating his signing capability to the entity E1 at the
level 1. AA generates a delegation warrant, signs it with his private key and sends the signature along
with his public key to E1. Subsequently, E1 can redelgate the acquired signing capability to another

6The set of (Pi = 〈Xi, Yi〉)0≤i≤t−1 can be obtained from Et’s parent when receiving his partial private key Dt
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entity E2 at a different level by generating a new delegation warrant which E1 signs using both his
private key and the previously received delegation signature from AA. Upon receiving and validating
the delegation signature, E2 can further redelegate the acquired signing capability on behalf of AA and
E1 to another entity E3 and so on. In our scheme we distinguish between the first signing capability
delegation from AA to E1 and its further redelegation to other entities (Ei)i≥2. In the following, We
describe these two kinds of signing capability delegation.

4.5.1 Attribute Authority signing delegation

The attribute Authority server (AA), after authenticating the user E1, extracts his VO’s attributes from
the users attributes database and generates the warrant mA. This warrant includes the identities of both,
the AA server and E1, an expiry date after which the warrant mA become obsolete in addition to E1

attributes which will be used for authorization7 decision making at the resource level. In addition, AA
includes a copy of his public key PA within the warrant. Then, the server picks-up a random rA ∈ Zq,
and outputs the delegation signature σA = 〈mA, UA, PA, VA〉 as follows:

UA = rAQA

hA = H2(mA, UA)
VA = (hA + rA)SA

and sends σA to E1 over a secure channel8.
To ensure that σA was correctly computed by the AA, E1 can check whether the following equations

hold:

e(YA, P ) = e(XA, Ppub)
e(VA, P ) = e(hAQA + UA, YA)

Otherwise, E1 needs to reauthenticate with the AA and get a new delegation signature σA.

4.5.2 Proxy signing redelegation

After receiving and validating σA, E1 generates a delegation warrant m1 in which he includes his identity
as well as E2 identity (as his proxy) and the delegation restrictions he wants to be enforced. Also, he
includes a copy of his public key P1 within m1. Then, he picks up a random r1 ∈ Zq and computes:

W1 = r1x1Q1 = w1
1

h1 = H2(m1, Q1)
V1 = r1h1S1 + h1VA

and sends σ1 = 〈mA, UA, PA,m1,W1, P1, v1〉 to E2 over a secure channel to E2.
In general, each node Ei after receiving σi−1 from his ancestor Ei−1, generates a delegation warrant

mi containing his identity as well as the identity of his designated proxy signer Ei+1 and the delegation
restrictions to be enforced over his delegation in addition to his public key Pi. Then, he chooses a
random ri ∈ Zq and computes:

Wi = (rixiQk)1≤k≤i = (wi
k)1≤k≤i (2)

hi = H2(mi, Qi)
Vi = rihiSi + hiVi−1

Subsequently, he sends the computed signature σi = 〈mA, UA, PA, (mj)1≤j≤i, (Wj)1≤j≤i, (Pj)1≤j≤i, Vi〉
to Ei+1, over a secure channel.

7attribute push based authorization
8the secure channel use is only required to protect the content of mA from unwanted discloser, thereby guaranteeing

the privacy of E1. Otherwise, a public channel can be used.
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Thus, after t+1 delegations (from AA to Et+1), we can infer that Vt, within the delegation signature
σt, satisfies the following equation:

Vt =
t∑

i=1




t∏

j=i+1

hj


 rihiSi +




t∏

j=1

hj


VA

=
t∑

i=1




t∏

j=i

hj


 riSi +




t∏

j=1

hj


 (hA + rA)SA (3)

It is to be noted that each entity (Et)t≥2 can validate a received delegation signature σt−1 as follows.
First, Et extracts the identities tuples within the warrants (mi)1≤i≤t−1 and mA, and checks if the original
signer or delegator stated within a warrant mi is also stated as a proxy signer within the previous warrant
mi−1. Thereby, forming the chain of identities tuples corresponding to the delegation chain. Using the so
formed identity tuples chain, Et computes hi = H2(mi, Qi) for all 1 ≤ i ≤ t− 1. Finally, the delegation
signature will be considered as valid9, if the following equations10 hold:

e(YA, P ) = e(XA, Ppub)
e(Yi, P ) = e(Xi, Ppub) , for all 1 ≤ i ≤ t− 1

e(Vt−1, P ) =
∏t−1

i=1

∏i
k=1 e(wi

k, Xk−1)
Qt−1

j=i hj

e(hAQA + UA, YA)−
Qt−1

j=1 hj

(4)

=

∏t−1
k=1 e

(∑t−1
i=k(

∏t−1
j=i hj)wi

k, Xk−1

)

e(hAQA + UA, YA)−
Qt−1

j=1 hj

(5)

In this case, Et will be also in possession of an authentic copy of the public keys (Pj)1≤j≤t−1 of all the
previous entities (Ej)1≤j≤t−1.

4.6 Proxy Signing Scheme

To proxy sign a message m, first, Et computes his proxy signing key SProxyt = Vt−1 + rtSt, with rt

being a random value in Zq and Vt−1 the value taken from the delegation signature σt−1. Subsequently,
Et chooses another random a ∈ Zq and then computes:

Wt = (rtxtQk)1≤k≤t = (wt
k)1≤k≤t

R = e(P, aP )
ht = H2(m,Qt)
h = H3(m,R)
S = hhtSProxyt + aP

Finally, Et outputs the signature σProxyt = 〈mA, UA, PA, (mi)1≤i≤t−1, (Wi)1≤i≤t, (Pi)1≤i≤t, h, S〉 over
the message m.

4.7 Proxy Signature verification

Any verifier knowing the system parameters under which a given proxy signature σProxyt = 〈mA, UA, PA,
(mi)1≤i≤t−1, (Wi)1≤i≤t, (Pi)1≤i≤t−1, h, S〉 over a message m was computed, can check its authenticity

9the delegation restrictions, as delegation’s validity time frame, within all the warrants must be enforced by Et.
10e(Vt−1, P ) can be computed using either equation 4 or 5.
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by computing:

hj = H2(mj , Qj) , for all 1 ≤ j ≤ t− 1
ht = H2(m,Qt)
hA = H2(mA, UA)

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj
(6)

The verifier will accept the signature if all the delegation’s restrictions expressed within the warrants
set (mi)1≤i≤t−1 and mA are not violated, and if the following equations hold:

e(YA, P ) = e(XA, Ppub)
e(Yi, P ) = e(Xi, Ppub) , for all 1 ≤ i ≤ t

h = H3(m, r)

5 Scheme analysis

In this section, we will prove the correctness of the proposed scheme, analyse its security and evaluate
its performance with respect to computational and communication (signature size) costs.

5.1 Correctness

Claim 1 (scheme Correctness). Let (Pi)1≤i≤t and PA be a set of correctly computed public keys, and
σProxyt = 〈mA, UA, (mi)1≤i≤t−1, (Wi)1≤i≤t, (Pi)1≤i≤t, h, S〉 be a valid proxy signature over a given mes-
sage m, which was produced following our proposed scheme. Then, the proxy signature verification
equations:

e(YA, P ) = e(XA, Ppub)
e(Yi, P ) = e(Xi, Ppub) , for all 1 ≤ i ≤ t

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj

are correct and hold.

For the mathematical proof of the scheme correctness property, interested readers are kindly referred
to appendix A.

5.2 Security concerns

The propose scheme does not suffer from the Identity-Based cryptography inherent Key escrow where
the PKG, is in possession of users private keys. In fact, private keys are computed locally based on
randomly generator secret value and the received partial private key (refer to section 4). Thus, our
scheme is key escrow free.

According to [9, 19], a secure proxy signature should fulfill the following requirements: strong un-
forgeability, verifiability, strong identifiability, strong undeniability and prevention of misuse. In the
following, the original signer is being the Attribute Authority and the proxy signer is being one of the
(Ei)i≥2 entities (refer to figure 4) and the proxy delegator is being the corresponding ancestor Ei−1 of
Ei.

Strong unforgeability: A legitimate proxy signer is the only entity to be able to create a valid proxy
signature over a given message on behalf of an original signer. Even the original signer or the
proxy delegator cannot forge such a proxy signature.
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Verifiability: From a proxy signature, a verifier can be convinced of the agreement of the original signer
and all the intermediate proxies within the delegation chain on the signed message.

Strong identifiability: From a proxy signature, a verifier can determine the identity of the correspond-
ing proxy signer.

Strong undeniability: Once a proxy signer generates a proxy signature over a message on behalf of
an original signer and all the intermediate proxy signers on the delegation chain, the proxy signer
cannot repudiate his signature against anyone.

Prevention of misuse: We should be confident that the delegation signature and the proxy signing key
are used only for delegating the signing capabilities and to proxy sign messages without violating
any of the agreed upon delegation restrictions and warrants.

We will discuss the security of our proposed scheme according to these requirements.

5.2.1 Strong unforgeability

In our scheme, even a given ancestor entity Ei, who knows the partial private key Di+1 of the entity
Ei+1 and Vi in the proxy delegation signature, cannot compute neither a valid proxy signature σproxyi+1

nor a valid delegation signature σi+1 in place of Ei+1. To do so, Ei must acquire the secret value
xi+1 or the private key Si+1 of Ei+1 in order to compute Vi+1 or the proxy signing key Sproxyi+1 . if
Ei is able to learn xi+1 from Xi+1 = xi+1P , Yi+1 = xi+1Ppub, or even from (wi+1

k )1≤k≤i+1, then Ei

can forge the proven unforgeable, Boneh-Franklin [3] and Gentry-Silverberg [6] signatures, under the
Computational Diffie-Hellman, Bilinear Diffie-Hellman and elliptic-curve discrete logarithm problems
hardness assumptions (refer to section 4.2).

5.2.2 Verifiability

Since all the delegation warrants include the identity and public key of the delegator or original signer
in addition to the delegation restrictions to be enforced, the verifier of a proxy signature can check its
authenticity and then verify whether the signed message comply or not with all the delegation restrictions
stated within the warrants set. If so, the verifier can be convinced of the agreement of the original signer
and the intermediate proxy signers within the delegation chain on the signed message. In fact as one can
see in equation 3, the value of Vt includes the private keys of the original signer and all the intermediate
proxy signers in addition to hashs of the all involved delegation warrants. These hashes in conjunction
to other public informations are used within the proxy signature verification equation to check the
authenticity of the proxy signature.

5.2.3 Strong identifiability

In our scheme, the identity of the proxy signer is tied up with any proxy signature he generates. In
fact, any signature over a message produced by a proxy signer Et includes a warrant mt−1 in which his
identity is stated as being a designated proxy signer in addition to the hash ht = H2(m,Qt) that ties
this latter identity to the message being signed.

5.2.4 Strong undeniability

Considering the strong unforgeability and the strong identifiability properties, only the proxy signer,
whose identity is identified within a proxy signature, can generate such a proxy signature. Therefore, he
cannot deny his responsibility.
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5.2.5 Prevention of misuse

In our scheme, the delegation signature and proxy signing key cannot be used to learn any of the involved
parties private keys. Thereby, they cannot be used for other purposes than proxy signing and delegating
signing capability. The compliance of these actions with their respective warrants are to be enforced by
any entity verifying a proxy signature or being delegated a signing capability on behalf of some other
entities.

5.3 Performance evaluation

Pairings are expensive compared to summation and exponentiation. While computing the value of r,
the verifier have to compute nt = t(t+1)

2 + 2 pairings. This number can be reduced by doing some
optimizations in the way r is computed (for the mathematical correctness proof for this optimized form,
interested readers are kindly referred to appendix B). In fact, the verifier can compute r as follows:

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
k=1 e

(∑t
i=k(

∏t
j=i hj)wi

k, Xk−1

)h
(7)

Thus, reducing the number of computed pairings to nt = t + 2.
Using the PBC [18] library we implemented the proposed scheme and measured its computational and

communication11 cost. In fact, figure 6 depicts the computational time required for the proxy signing
procedure, the proxy signature verification procedure, and the optimized proxy signature verification
procedure with respect to the length of the proxy chain. Figure 5, illustrates the computational time
required to form a delegation chain and to carry out the signature delegation over it with respect to the
intended chain length.

Figure 5: Signature delegation time over the proxy chain

As predicted, we can see that the proxy signature verification using the optimized form of r requires
less time than the non optimized one. This is due to the fact that the non-optimized form uses nt =
t(t+1)

2 + 2 pairings , while the optimized one needs to perform nt = t + 2 pairings.
For instance,as illustrated in figure 6, when the proxy chain is 40 nodes long, the proxy signing

procedure takes 0.977 seconds, the non-optimized signature verification procedure requires 7.704 seconds
to complete, whereas the optimized proxy signature verification takes 6.379 seconds. In this case, it takes

11with respect to the size of generated signature
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Figure 6: Proxy signing and verification time

19.111 seconds to form the delegation chain of 40 nodes and carry out the signature delegation procedure.
This can be more enhanced by applying efficient pairings [2].

Figure 7: Proxy signature size (without including warrants)

Figures 7 depicts the evolution of the proxy signature size (in kilo bytes) with respect to length of
the delegation chain. For example, a user at the bottom of delegation chain comprised of 40 nodes will
output a proxy signature around 116 kilobyte (without taking into consideration the warrants) in size.
If we consider that the size of each of the elements composing the proxy signature, like Xi, Yi, w

i
k, UA, h,

and S are roughly equal (128 bytes in our benchmark), we can infer that the size of the proxy signature
σproxyt (having t nodes in the delegation chain) is proportional to t2+5t

2 + 5.
In our scheme, computation can be saved by the verifier when checking the authenticity of a proxy

signature over a new message from the same proxy signer. In fact, when a proxy signer outputs a
signature over a message on behalf of the same proxy chain (assuming that the warrants still permits
such an operation: for example delegation’s validity period haven’t yet expired), only the elements
h, ht, R and S will change. Then, the proxy signer needs to send only the new values of h and S to the
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verifier (ht can be computed by the verifier), thereby, reducing the signature size (to 148 bytes in our
benchmark), in the first place. The verifier, can save the following quantities, Kdelegt−1 and Kproxyt

,
when checking a signature from the proxy signer at the first time:

Kdelegt−1 =
e(hAQA + UA, YA)−

Qt−1
j=1 hj

∏t−1
k=1 e

(∑t−1
i=k(

∏t−1
j=i hj)wi

k, Xk−1

) (8)

=
e(hAQA + UA, YA)−

Qt−1
j=1 hj

∏t−1
i=1

∏i
k=1 e

(
wi

k, Xk−1

)Qt−1
j=i hj

(9)

Kproxyt
=

1∏t
k=1 e(wt

k, Xk−1)
(10)

and use them as a pre-computed values12 for further signatures verification from the same proxy
signer as follows:

r = e(S, P ) · (Kht
proxyt

Kdelegt−1

)hht (11)

Thus, reducing the computational cost (to 0.009 seconds in our benchmark), in the second place.

6 Conclusion

In this paper we presented a new cryptographic scheme, namely Certificateless Identity-Based Proxy
Signature. In this proposed scheme, the signing capability of an original signer, which can be an Attribute
Authority within a Grid-computing VO, is delegated to a chain of entities or chain of proxy signers. The
used signing delegation in our proposal is warrant-based, thus, making it straightforward to carry user’s
attributes and also implies fine grained delegation. In fact, a proxy signer within the proxy chain, by
just proxy-signing a message or a job request, can claim to be a trusted and legitimate proxy of the
corresponding authenticated user, if the presented proxy signature is accepted by the requested resource
authorization manager. In this case, the warrant-carried attributes, will be assumed as authentically
asserted by the VO Attribute Authority, and can be used for authorization decision making. In addition,
being able to output a valid proxy signature implies the authentic delegation relationship between the
original signer and the proxy signer. Thereby, resource access manager can be freed from authenticating
users by leaving this procedure to be carried out and enforced by a trusted Attribute Authority using the
existing and available authentication mechanisms in place when asserting users attributes and delegating
his signing capability to them. Using the pairing based library, we implemented the propose scheme and
measured its computational cost and bandwidth (signature size) overhead. Our results, shows a satisfying
overhead up to a proxy chain of 40 nodes long. Finally, we analyzed the correctness and security of our
proposed scheme and showed that it was secure according to the literature security requirements for
proxy signing.
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A Proof of the correcteness claim

Let (Pi)1≤i≤t and PA be a set of correctly computed public keys, and σProxyt
= 〈mA, UA, (mi)1≤i≤t−1,

(Wi)1≤i≤t, (Pi)1≤i≤t, h, S〉 be a valid proxy signature over a given message m, which was produced
following our proposed scheme.

Proof. Using the bilinearity property of the pairing e, we have for all 1 ≤ i ≤ t:

e(Yi, P ) = e(xiPpub, P )
= e(xix0P, P )
= e(xiP, x0P )
= e(Xi, Ppub)

Similarly, we can proove that e(YA, P ) = e(XA, Ppub).
On the other hand, using the definition of the proxy signing key Sproxyt , we deduce:

e(S, P ) = e(hhtSProxyt + aP, P )
= e(hhtSProxyt , P ) · e(aP, P )
= r · e(hht(Vt−1 + rtSt), P )
= r · e(hhtrtSt, P ) · e(hhtVt−1, P ) (12)

Using the definition of a private key St (see equation 1), we induce the following:

e(hhtrtSt, P ) = e(hhtrt

t∑

k=1

xtxk−1Qk, P )

= e(
t∑

k=1

hhtrtxtxk−1Qk, P )

=
t∏

k=1

e(hhtrtxtxk−1Qk, P )

=
t∏

k=1

e(hhtrtxtQk, xk−1P )

=
t∏

k=1

e(htw
t
k, Xk−1)h (13)
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Using equation 1, 2 and 3 we have:

e(hhtVt−1, P ) = e(hht

t−1∑

i=1




t−1∏

j=i

hj


 riSi +

hht




t−1∏

j=1

hj


 (hA + rA)SA, P )

=
e(

∑t−1
i=1 hht

(∏t−1
j=i hj

)
riSi, P )

e(h
(∏t

j=1 hj

)
(hA + rA)SA, P )−1

=
∏t−1

i=1 e(riSi, P )h
Qt

j=i hj

e((hA + rA)SA, P )−h
Qt

j=1 hj

=
∏t−1

i=1 e(
∑i

k=1 rixixk−1Qk, P )h
Qt

j=i hj

e((hA + rA)xAx0QA, P )−h
Qt

j=1 hj

=
∏t−1

i=1

∏i
k=1 e(xk−1w

i
k, P )h

Qt
j=i hj

e((hA + rA)QA, xAx0P )−h
Qt

j=1 hj

=
∏t−1

i=1

∏i
k=1 e(wi

k, xk−1P )h
Qt

j=i hj

e(hAQA + UA, YA)−h
Qt

j=1 hj

=
∏t−1

i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj

e(hAQA + UA, YA)−h
Qt

j=1 hj
(14)

Finally, from equations 12, 13, and 14 we can deduce:

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj
(15)

which concludes our scheme’s correcteness proof

B Optimized proxy signature correctness proof

Proof. Given the fact that the proposed scheme is correct (refer to Claim 1) we need only to show that
the following equation holds:

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj
=

e(S, P ) · e(hAQA + UA, YA)−h
Qt

j=1 hj

∏t
k=1 e

(∑t
i=k(

∏t
j=i hj)wi

k, Xk−1

)h

Claim 2. For any given t ∈ N∗, the following equation holds:

αt =
t∑

i=1

i∑

k=1

rixi




t∏

j=i

hj


xk−1Qk =

t∑

k=1

t∑

i=k

rixi




t∏

j=i

hj


 xk−1Qk (16)

Proof. Let t = 1, then:

α1 =
1∑

i=1

i∑

k=1

rixi




1∏

j=i

hj


xk−1Qk = r1x1h1x0Q1

=
1∑

k=1

1∑

i=k

rixi




1∏

j=i

hj


xk−1Qk
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So statement 16 holds for t = 1.
Assume that for a given n ∈ N∗, statement 16 holds for t = n; that is:

αn =
n∑

i=1

i∑

k=1

rixi




n∏

j=i

hj


xk−1Qk =

n∑

k=1

n∑

i=k

rixi




n∏

j=i

hj


xk−1Qk

Let t = n + 1

αn+1 =
n+1∑

i=1

i∑

k=1

rixi




n+1∏

j=i

hj


xk−1Qk =

n∑

i=1

i∑

k=1

rixi




n+1∏

j=i

hj


 xk−1Qk +

n+1∑

k=1

rn+1xn+1hn+1xk−1Qk

= hn+1

n∑

i=1

i∑

k=1

rixi




n∏

j=i

hj


xk−1Qk +

n∑

k=1

rn+1xn+1hn+1xk−1Qk + rn+1xn+1hn+1xnQn+1

= hn+1

n∑

k=1

n∑

i=k

rixi




n∏

j=i

hj


xk−1Qk +

n∑

k=1

rn+1xn+1hn+1xk−1Qk + rn+1xn+1hn+1xnQn+1

=
n∑

k=1

n∑

i=k

rixi




n+1∏

j=i

hj


 xk−1Qk +

n∑

k=1

rn+1xn+1hn+1xk−1Qk + rn+1xn+1hn+1xnQn+1

=
n∑

k=1




n∑

i=k

rixi




n+1∏

j=i

hj


xk−1Qk + rn+1xn+1hn+1xk−1Qk


 + rn+1xn+1hn+1xnQn+1

=
n∑

k=1

n+1∑

i=k

rixi




n+1∏

j=i

hj


xk−1Qk + rn+1xn+1hn+1xnQn+1

=
n+1∑

k=1

n+1∑

i=k

rixi




n+1∏

j=i

hj


xk−1Qk

Then statement 16 holds for t = n + 1.

Now, we need to prove that:

t∏

i=1

i∏

k=1

e(wi
k, Xk−1)h

Qt
j=i hj =

t∏

k=1

e




t∑

i=k

(
t∏

j=i

hj)wi
k, Xk−1




h

(17)

Using the bilinearity property of a bilinear pairing (map), we have:

t∏

k=1

e




t∑

i=k




t∏

j=i

hj


 wi

k, Xk−1




h

=
t∏

k=1

e




t∑

i=k

rixi




t∏

j=i

hj


Qk, xk−1P




h

=
t∏

k=1

e




t∑

i=k

rixi




t∏

j=i

hj


xk−1Qk, P




h

= e




t∑

k=1

t∑

i=k

rixi




t∏

j=i

hj


xk−1Qk, P




h
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Using Claim 2, we conclude that:

t∏

k=1

e




t∑

i=k




t∏

j=i

hj


 wi

k, Xk−1




h

= e




t∑

i=1

i∑

k=1

rixi




t∏

j=i

hj


xk−1Qk, P




h

=
t∏

i=1

e




i∑

k=1

rixi




t∏

j=i

hj


 xk−1Qk, P




h

=
t∏

i=1

i∏

k=1

e


rixi




t∏

j=i

hj


 xk−1Qk, P




h

=
t∏

i=1

i∏

k=1

e(rixiQk, xk−1P )h
Qt

j=i hj

=
t∏

i=1

i∏

k=1

e(wi
k, Xk−1P )h

Qt
j=i hj

Then statement 17 holds. Thereby, the following equation also holds:

r =
e(S, P ) · e(hAQA + UA, YA)−h

Qt
j=1 hj

∏t
i=1

∏i
k=1 e(wi

k, Xk−1)h
Qt

j=i hj
=

e(S, P ) · e(hAQA + UA, YA)−h
Qt

j=1 hj

∏t
k=1 e

(∑t
i=k(

∏t
j=i hj)wi

k, Xk−1

)h

Which concludes our proof.
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