
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Faster Evaluationof
ZBDD Compressed Multi-Linear Functions

with GPU Parallelism

Shin-ichi Minato, Mikael Onsjö, Osamu Watanabe

Jan. 2011, C–274



Faster Evaluation of

ZBDD Compressed Multi-Linear Functions

with GPU Parallelism

Shin-ichi Minato†, Mikael Onsjö∗ and Osamu Watanabe∗
†Graduate School of Information Science and Technology, Hokkaido University

∗Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
(watanabe(at)is.titech.ac.jp)

(Research Reort C-274, Dept. of Math. & Comp. Sci., January, 2011)

1 Background

This report describes a method to quickly evaluate multi linear functions (MLFs for
short) using GPUs. The goal is to evaluate MLFs expressing marginal probabilities in
large Bayesian Networks that are represented as compressed to zero-suppressed binary
decision diagrams (ZBDDs for short) [Min93]. These functions have highly optimized
CPU implementations; we compare them with their corresponding GPU implementa-
tions.

The method for creating the GPU implementations is not limited to the case of
MLFs but could theoretically be applied to virtually any computation that can be fac-
tored into a (large) set of fairly homogeneous operations. Bayesian Networks, however,
do due to their importance in a vast number of different applications provide a good
setting for comparison.

In recent years, researchers have for various algorithms reported speedups in the
order of 100, 200 or occasionally even several thousand times when moving from CPU
computation to the GPU. In many cases it is, however, somewhat questionable whether
the sequential, CPU, implementation used for comparison was fully optimized. In the
case of MLFs represented by ZBDDs, however, significant effort has been made [MSS07]
to provide a highly optimized single thread implementation.

An approach taken by Minato et. al. recently [TM10] is to generate a C program
for the function and then have the GNU compiler, gcc, optimize the computation. At
the present we do not know of any software that can provide the same service for
compiling general code to the GPU. Instead we try to organize the data in parallel
levels of computation and make an implementation in CUDA. Additionally since gcc
(cc) requires huge amounts of time and memory, we were compelled to make a faster
but efficient compiler for the CPU.

Our results indicate that for some large Bayesian Networks, publicly available for
benchmarking purposes (see, e.g., [BNR]), an implementation on the Tesla C1060 GPU

1



runs at least 6 times faster than what we may expect from an optimized single thread
implementation on a 2.5 GHz AMD Phenom processor.

2 Transforming a ZBDD Compressed MLF into a GPU
program

In a ZBDD compressed MLF [MSS07], the computation is simply represented as a set
of operations of one of the forms

f [a]← f [b]x[c] + f [d] typeA

f [a]← f [b]x[c] typeB

where f is the values kept in the nodes of the diagram, x the input values given as an
argument to the MLF and a, b, c, d are varying indices to f and x respectively. Most of
the values in f are originally uninitialized (if there is an operation like f [a] = x[b] or
f [a] = 1, we simply call f [a] initialized).

For the C-program, each variable f [i] is managed by the compiler which will try
and optimize cache and memory usage (i.e. in the code f [123] is written as f123) and
the numbering is inconsequential. By contrast, in the GPU program the variables must
by necessity be kept as an array in global memory and should be numbered compactly.
Furthermore to enable coalesced writing, the variables are named so that the left side
is in sequence, and this ordering is maintained whenever the operations are reordered.
For example, a sub-sequence of the operations may be:

f [4] ← f [1]x[2] + f [2]

f [5] ← f [3]x[3]

f [6] ← f [4]x[4] + f [5]

which would mean that f [6] = f [1]x[2]x[4] + f [2]x[4] + f [3]x[3] at the end.
Note that in this example, the ordering of computation for f [4] and f [5] is arbitrary

- they may be computed in either order or in parallel as long as both are complete
before the f [6] calculation is begun. The three operations may be carried out in two
respectively parallel levels. The second step in creating the GPU program is exactly
this: Split the computation into a number of levels so that the operations of each can
be computed in parallel. The necessary number of levels correspond to the longest path
in the ZBDD. To begin with we choose the levels “greedily”, that is, starting with the
initialized variables as level 0, level 1 will be all variables that can be computed from
the initialized ones and so on. In the worst case one might need as many levels as there
are operations, but in practice and for the Bayesian Networks we are dealing with the
number is significantly lower. Figure 1 show examples of how the levels may be chosen
for some networks.

Each scalar multiprocessor (SM) on the GPU performs SIMD (single instruction
multiple data) operations in warps of W = 32 threads at a time. The group of threads
executed by one SM is called a block. To avoid many conditional jumps that take time

2



0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200

MUN3A with 2613497 nodes in 223 levels

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200

MUN3B with 1003502 nodes in 206 levels

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140 160

MUN2A with 443632 nodes in 173 levels

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140

MUN2B with 303308 nodes in 146 levels

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250

HAILA with 231553 nodes in 279 levels

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140

MUN3C with 140166 nodes in 155 levels

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

HAILB with 108275 nodes in 279 levels

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

WATER with 16975 nodes in 132 levels

Figure 1: Histogram over the size of the levels obtained after analyzing the ZBDDs for
various Bayesian Network MLFs. The gray area indicate levels that are performed by
the GPU, e.g. the thresholds where the level size passes 480 operations. The dark area
corresponds to typeA operations while the lighter colored parts of each bar represent
typeB operations.

and may make the threads of a warp diverge, we organize the operations of each level
so that typeA are first and typeB second. Then we divide the level of operations into
a fixed number of blocks that we call B = BA + BB, each block is assigned a roughly
equal number of consecutive operations from either the typeA (BA blocks) or the typeB
group (BB blocks). No block performs operation of both types. Each block is set to
execute a number, T , of threads, each of which performs a roughly equal number of
operations that is now determined by the parameters and the size of the level.

A level consisting of few operations is not well suited for computation on the GPU.
Certainly the number of operations should be more than the number of cores available.
We therefore choose a threshold, Th, relative to the number of cores (240 on the Tesla
C1060): smaller levels are performed by the CPU and larger by the GPU. This works
well in practice in many cases, but unfortunately when switching between CPU levels
and GPU levels, data must be transferred between the two devices (e.g. over a PCIe

3



interface). It is therefore better to choose somewhat softer threshold criteria. Many
networks may be divided into three phases; CPU preliminary, GPU and CPU poste-
rior; as the level diagrams are roughly uni-modal. Networks with highly multimodal
level diagrams (such as HAILA and HAILB in figure 1) on the other hand, are more
complicated.

For performing the computation of GPU levels, the best performance will be had
e.g. if both the the number of typeA and the number of typeB operations is fairly large
and divisible by B ·W . For one level of operations it may be possible to postpone some
operations to the next level, provided that the result of those operations is not needed
in that level. The last step in organizing the operations is therefore to try and justify
the sizes of the levels in this fashion. The task of optimizing in this way appears to
be computationally hard in general, but a simple greedy approach performs relatively
well in practice.

So far we have not made use of the software controlled shared cache that is available
on each SM on the GPU. Doing so could possibly speed up the computation whenever
one variable is used several times within the same level. In practice this seems to
happen for the input variables, x, but less often for f . We therefore proceed as follows:
For each type of variables in each level, sort the operations w.r.t. the index of the input
operand x that is used. Take note of the largest and smallest index. Let M denote the
number of words that can be contained in the shared cache; now split the input variables
naturally into sub-groups of sizes M and the groups of operations correspondingly into
sub-groups of operations. Whenever a scalar multiprocessor starts working on such a
sub-group, it first preloads all the pertinent input variables into shared cache. Note
that the indices of the input variables must be recomputed to indices in the cache, this
can be done once during the compilation of the ZBDD into the GPU program.

3 Custom CPU ZBDD Compiler

Since the GCC C compiler requires too much time and memory for use with large
networks, we had to make a custom compiler. This generates assembler code in linear
time, then compiles and links it using GCC (GAS). As can be seen in the next section,
this approach compiles significantly faster and yields results that run almost as fast as
the optimized gcc versions. Furthermore the memory requirement in the latter case is
linear and quite manageable for the networks used so far.

In this approach we select the order of the operations according to a depth first
search where, if there is more than one child, we prefer to start with the child that has
the largest number of parents. This ensures that almost all variables that have only
one parent (is used only once after it is computed) never have to be stored in memory.
As can be seen in figure 2, this is one of the more significant of optimizations.

Note: This indicates that the optimization technique applied by gcc that has most
bearing on the result, is the reordering of computation so that some variables are not
stored in main memory at all.

4



0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 1 2 3 4 5 6 7 8

MUN3A

0

50000

100000

150000

200000

250000

300000

350000

400000

0 1 2 3 4 5 6 7 8 9

MUN3B

0

50000

100000

150000

200000

0 2 4 6 8 10 12 14

MUN2A

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7

MUN2B

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2 4 6 8 10 12 14

HAILA

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7 8

MUN3C

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14

HAILB

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

WATER

Figure 2: This shows for each network how many nodes there are that have a certain
number of parents. In any of the larger networks, only about 20% of all nodes have
more than one parent.

4 Presentation of Results

The results indicate that for some large networks a Tesla C1060 GPU implementation
may be able to evaluate the multi-linear functions at least 6 times faster than an
optimized single thread implementation with a 2.5 GHz AMD Phenom CPU, or 16
times faster than the unoptimized gcc version. The data is presented in figure 3.

When gcc is used without optimization options, the times increase regularly in a
near linear fashion. For the GPU, the times appear to level out somewhat. Comparing
the expected derivative1 of the curves for large networks yield a factor of 16 or higher.
When gcc is used with optimization O1, it becomes impossible to compile large networks
in reasonable time (see table 1). Instead we provide a custom version that appears to
be nearly as efficient as the gcc optimized one but with significantly less overhead to

1We compare the slant of the last line segments for the two curves.

5



0.026455
0.240353

0.485079
0.730077

0.951275
1.21762

1.52787
1.68755

1.88

2.35335

2.86307

3.83501

6.85692

16.0051

17
108

140
232

303 444 1004 2613

T
im

e
 i
n
 m

il
li
s
e
c
o
n
d
s

Number of thousands of nodes in ZBDD

cc

as

cc -O1
nvcc

w
a
te

r
h
a
ilb

m
u
n
3
c

h
a
ila

m
u
n
2
b

m
u
n
2
a

m
u
n
3
b

m
u
n
3
a

Figure 3: The time needed to evaluate some MLFs for various Bayesian Networks, for
the Tesla C1060 GPU and the 2.5 GHz AMD Phenom CPU respectively. Note that a
suitable GPU implementation for highly multi-modal case such as HAILA and HAILB
(see figure 1) has not yet been made.

compile. When again the expected asymptotic behaviours2 are compared, a factor of
at least 6 is suggested for the GPU speedup.

5 Further Improvements on the GPU Side

While the single thread CPU implementation would appear to be nearly (relatively
speaking) as optimized as it could be, there are a number of roads open for improving
on the GPU implementation. In this section we will outline a preliminary study of one
class of such possibilities.

The idea is based on the observation from figure 2 that most (i.e. 80-90%) of all
operation have only one parent (the result is used only once). Furthermore it is apparent
that there is a lot of overhead in the GPU kernel when a thread after performing a
simple typeA or typeB operation must immediately perform several loop instructions
(increment, condition and jump). This flaw could be ameliorated to a certain degree
by performing more complicated operations than the simple typeA and typeB.

Such operations can be formed by merging subsets of the original operations. Any
operation with only one parent can obviously be removed from whatever level it was
originally in and be computed instead as a direct part of the parent operation. Unfortu-

2Again we compare the last line segments.

6



Network ZBDD Nodes nvcc gcc gcc -O1 custom (as)

WATER 17,000 5 3 78 0.16
HAILB 108,275 ∗ 31 283 0.85
MUN3C 140,000 15 45 454 1.2
HAILA 231,553 ∗ 99 1557 1.8
MUN2B 303,000 32 171 2146 2.2
MUN2A 444,000 46 366 ∗ 3.3
MUN3B 1,004,000 108 ∗ ∗ 8.4
MUN3A 2,613,000 314 ∗ ∗ 18.6
∗no data obtained

Table 1: Build (compile) times in seconds for GPU and CPU versions. The CPU
versions were built using the GNU C compiler version 4.5 and the GNU assembler
(GAS) version 2.20. The GPU version was built using the NVIDIA CUDA compiler
version 3.00. “GCC -O1” indicates that the optimization flag O1 was passed to gcc.

nately this gives rise to a combinatorial explosion in the number of possible “compound”
operation. At the moment we will therefore restrict our attention on the case where
typeB operations are merged with parents into one of the following six types:

f [a]← f [b]x[c] type1

f [a]← f [b]x[c]x[d] type2

f [a]← f [b]x[c] + f [d] type3

f [a]← f [b]x[c]x[d] + f [e] type4

f [a]← f [b]x[c] + f [d]x[e] type5

f [a]← f [b]x[c]x[d] + f [e]x[g] type6

(mergings that would produce more complicated types are not allowed).
Looking again at figure 2 it is apparent that typeB operations with single parents

far outnumber all other operations and so we can expect to be able to reduce the total
number of operations by roughly 50% by organizing things carefully. With the type1-
type6 operations the GPU still has a large overhead per operation. But while this is in a
sense inefficient, it also means that reducing the total number of (simple) operations (in
favor of the slightly more complicated operations) can be expected to boost performance
almost proportionally. While the total amount of essential computation is unchanged,
the total amount of overhead is reduced by 50%.

Extending the idea further we ask weather it is possible to combine operations even
further. As mentioned before, the problem is a combinatorial explosion of the number
of possible types. Each kernel block of e.g. 32 or 64 threads should execute operations
of the same type, so when the number of represented types surpass, say, 1/32:th the
size of the level we waste resources because of idling threads. Although the situation
is highly problem dependent, it seems reasonable to hypothesize that the total number

7



0

5000

10000

15000

20000

25000

0 50 100 150 200

MUN3A with 1568162 nodes in 217 levels

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200

MUN3B with 660757 nodes in 202 levels

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160

MUN2A with 278433 nodes in 171 levels

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

MUN2B with 186947 nodes in 144 levels

0

500

1000

1500

2000

2500

0 50 100 150 200 250

HAILA with 162473 nodes in 276 levels

0

500

1000

1500

2000

0 20 40 60 80 100 120 140

MUN3C with 87601 nodes in 152 levels

0

200

400

600

800

1000

0 50 100 150 200 250

HAILB with 75672 nodes in 275 levels

0

50

100

150

200

250

0 20 40 60 80 100 120

WATER with 11917 nodes in 126 levels

Figure 4: This shows for each network how many operations of each of the compound
type1-6 operations there are organized into levels (in one possible way).

of operations can be reduced by a factor proportional to log L̄, where L̄ is the average
number of original typeA and typeB operations in a level, by recursively combining a
number of single parent operations together to that depth.

At the same time there are many different ways of combining operations and it
may very well be possible to avoid using several “types” altogether, or alternate types
between different levels. Other approaches exist: It may be possible to reduce the total
number of levels by, say, targeting one and merging all it’s operations with parents.
It may be possible to reduce the number of types recognized by the GPU kernel, by
executing some simpler types as if they were more complicated, using dummy variables
of 1 or 0.

In short, organizing the GPU computation appears to be a highly non-trivial opti-
mization problem in its own right. Although this problem certainly will depend on the
shape of the underlying ZBDD/network, it seems likely that some interesting, generally
valid, statements may also be withing reach.

8



Acknowledgement

This research has been conducted under the collaboration of the JSPS Global COE
program “Computationism as a Foundation for the Sciences” and the ERATO Minato
Discrete Structure Manipulation Project.

References

[BNR] Bayesian Network Repository,
http://www.cs.huji.ac.il/ galel/Repository/

[Min93] S. Minato, ”Zero-suppressed BDDs for set manipulation in combinatorial
problems, in Proc. of 30th ACM/IEEE Design Automation Conference
(DAC’93), pp. 272-277, Jun. 1993.

[MSS07] S. Minato, K. Satoh, and T. Sato, Compiling Bayesian networks by symbolic
probability calculation based on Zero-suppressed BDDs, in Proc. of 20th
International Joint Conference of Artificial Intelligence (IJCAI-2007), pp.
2550-2555. Jan. 2007.

[NV09] Nvidia: CUDA Programming Guide, ver. 2.3.1.,
http://www.nvidia.com/object/cuda develop.html, Aug 26 (2009).

[TM10] W. Takahashi and S. Minato, Synthesis of fast calculation programs from
ZDDs for representing Bayesian networks and its evaluation, in Proc. IE-
ICE/IPSJ Forum on Information technology 2010, D-009, Vol. 2, pp. 411-
414, Sep. 2010 (in Japanese).

9


