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Abstract

We propose a generalization of a PAC-learning algorithm known as
the Low Degree Learning Algorithm for non-uniform distributions. We
show that our algorithm works under a non-uniform distribution D if the
smallest eigenvalue of the Fourier coefficient matrix of the distribution is
not too small. We also show that this condition is guaranteed if |S| < 2"
for some 1 < 1 and for each size parameter n, where S is the set of example
instances of size n whose probability under D is < (poly(n)2™)~".

1 Introduction

The learnability notion in the Probably Approzimately Correct (PAC) learn-
ing model is one of the most important criteria in the field of computational
learning theory. Unfortunately, however, since the PAC learning model was in-
troduced by Valiant in 1984 [7], not so many positive results have been shown
on the original version of the PAC learnability problem despite of various deep
research investigations of a quarter century. On the other hand, the distribu-
tion restricting version of PAC leaning model, in particular, with respect to the
uniform distribution, some important learning algorithms have been obtained.
Thus, it has been one of the important problems to generalize such learning
algorithms for arbitrary distributions. In this paper we propose a generaliza-
tion of one of such algorithms known as the Low Degree Learning Algorithm for
non-uniform distributions.

In the PAC learning model, the learner tries to learn an unknown labeling
function by a small number of pairs of data and the corresponding label which is
drawn according to an also unknown probability distribution. A concept class C
is a set of families of functions f = {f,},, where each f,, is a function mapping
{=1,41}" to {-1,+1}. Let f € C be an unknown target function which we
wish to learn, and D = {D,, },, be a family of unknown probability distributions
on each example instance {—1,+1}". We will not display n without need to
avoid confusion. A example oracle Ex(f, D) which generates, when queried, an
example (z, f(x)) where instance x is drawn with probability D(z). A learning
algorithm A takes parameters ¢, > 0. During execution, 4 has an access to
Ex(f, D), which is only the way for A to get information of f and D. The goal
of A is, for all n, to output a hypothesis h: {—1,41}" — {—1,+1} such that

Pr [[(2) # hw)] < c 1)
with probability not less than 1 — §. We say that the concept class C is PAC
learnable if such an algorithm A exists. For many basic concept classes such as
DNFs, AC circuits, etc., the problem of their PAC learnability has been an
important open problem.

Some notable progress has been made for the PAC learnability under the uni-
form distribution, and several important learning algorithms have been shown
[1, 2, 3] for this restricted version of PAC learnability. The Fourier analysis is
a fundamental tool for these results. As we will see in Section 2, the Fourier



basis on {—1,+1}" is equivalent to the set of multilinear monomials, and it is
an orthonormal basis of the functional space from {—1,+1}" to R with respect
to the uniform distribution. Then for example, a learning algorithm for AC°
is designed by the following two steps [1]: First it is shown that a set of low
degree monomials is enough for approximating any function in AC® under the
uniform distribution; Secondly, some algorithm is shown to obtain appropriate
low degree polynomials (and their coefficients) from examples. We call the first
step as “Fourier analysis part” and the second step as “algorithm part.” Since
low degree monomials are used, their learning algorithms are often referred as
Low Degree Learning Algorithms.

In this paper, we attempt to generalize such Low Degree Learning Algo-
rithms in the case that a distribution is far from the uniform one. We consider
only the algorithm part; that is, we assume that for a given target concept class
C, some subset of Fourier basis is enough to approximate functions in C well.
More precisely, we assume some function space P spanned by some subset of
Fourier basis such that for every function f € C, we have some g € P for which

17 =aly = B [(/@) —g@)?] <

~D

for our desired e. Then since the error of sign(g) is bounded by

Pr [f(x) # sign(g(x))] < [If = gll

we can use sign(g) as an hypothesis to achieve the PAC-learning goal (1) pro-
vided that g can be obtained efficiently. In this paper, we discuss an algorithm
for obtaining such g from examples. We show an algorithm that runs polyno-
mial time (w.r.t. given parameters) if not so many instances are assinged small
probabilities under D; more precisely, if |\S| < 2" for some 1 < 1 and for each
n, where S is the set of example instances of size n whose probability under D
is < (poly(n)2™)~1.

It should be noted here that for some concept classes C such as AC’, one
can define a distribution D and a function f € C such that a set of (reasonably)
low degree Fourier basis fails badly to approximate f under D [4, 5, 6]. Here
we consider the case that such a situation does not occur.

The structure of this paper is as follows. In Section 2, we give notations
and a few definitions about Fourier analysis which are used in this paper. In
Section 3, we give the main results of this paper, we propose and analyze a
generalization of the Low Degree Learning Algorithm.

2 Preliminaries

Let N be the set of all positive integers, R be the set of all real numbers, and
[n] :={1,2,...,n}. Let I be the identity matrix of any dimension.

Let F be the set of all functions from {—1,+1}" to R. We consider F to be
2"-dimensional vector space by defining (f + ¢)(x) := f(x) + g(z), (Bf)(x) =



Bf(x) for all f,g € F, z € {-1,4+1}" and BinR. We identify a function f € F
to the 2"-dimensional vector (f(x))zef—1,4+1}»

Let D be a probability distribution over {—1,+1}", and U be the uniform
distribution, ie. U(z) = 27" for all x € {—1,+1}". We identify D to the
2"-dimensional diagonal matrix whose entries are the probability masses of D,
i.e. Dyy = D(x) for x € {—1,+1}". Note that U =27 "1.

We define a non-canonical inner product and norm on R.

Definition 2.1. Let D be a distribution over {—1, +1}", inner product of func-
tions f,g € F with respect to D is defined by

(f.0)p= E [f@))]
axre

=g'Df = f'Dg

and induced (semi)norm is defined by the non-negative square root of
113 = f s fp= E_[f)]
= f'Df

e [Ifllp = v{fs fip
Definition 2.2. For a set S C [n], let xs € F be

n
Xs: = (x1,T2,...,%n) — Hmz
i=1

Each xg is a character on the Abelian group {—1,+1}" with bitwise multi-
plication, i.e. homomorphism to the multiplicative group of complex numbers.

Then {Xs}scn), called Fourier basis of F is an orthonormal basis of F with
inner product with respect to the uniform distribution.

Definition 2.3. For a function f € F, and a set S C [n], Fourier coefficient of
f on S is defined by

F(S) = {f. xs)y = JE [f(z)xs(z)]
=2 Z f(x)xs(z)

we{—1,+1}

By orthonormality of Fourier basis, f is expanded to
f= Z f (S)xs
SC[n]

called Fourier expansion of f.



3 Generalized Fourier Approximation Algorithm
(GFAA)

We consider the least square approximation problem with respect to arbitary
distribution. We will make an algorithm to solve the problem by examples. For
a target function f and a distribution D, the algorithm tries to get a function
g which approximates f in a space spanned by some subset of Fourier basis
functions. Both f and D are unknown for the algorithm, which makes queries
to the example oracle Ex(f, D) to get information on them.

Let D be a distribution over {—1, +1}". Let S be a set of subsets of [n], P be
a matrix whose column vectors are a subset of Fourier basis {xs}secs, P be the
funtional subspace spanned by the column vectors of P and K := |S| = dim P.

Formally, the problem we consider is the minimization problem

. 2
- 2
min || = gll% (2)

Note that || f — gllp = (f fg)TD(f —g) and g = P for 3 € R¥, hence this
problem can be written by

min (f — PB)"D(f — PB) (3)

BERK
Our algorithm is expected to output § of an approximate solution § of this
minimization problem.
3.1 Least square approximation under a distribution D

When Q := PTDP is invertible, we can explicitly write the optimum solution
of the problem by the standard calculation.

Lemma 3.1. Let

Q:=P™DP (4)
a:=PTDf (5)

If @ is invertible, the optimum solution of (3) is written by

p*=Q (6)
and the optimum solution of (2) is written by
g"=PB" =Y Bixs (7)
S

Proof. Let C(B8) = (f — PB) " D(f — Pf3), the cost function of (3),
C(B)=f"Df —28P"Df + fTPTDPS
='Df —25%a+57Q8



The derived function of C' is

oC

373(5) =2(Q8 — o)

The Hessian matrix of C' is

2
i
8ﬂ5’ 8ﬁT S, T
and is positive definite, because @ is invertible and has decomposition @ =

(P\/E)T(P\/E) where v/D is the diagonal matrix whose entries are y/D(x) for
x € {—1,+1}". This means that C is strictly convex function. Hence C takes
minimum value when Q0 = a. O

3.2 Algorithm

The key observation for making the algorithm GFAA is that each element of @
and a can be written by expectation.

Lemma 3.2. For S,T € S,
Qsr = B [xs(@)xr() )
as= B [f(@)xs(@) ©)
Proof. For Q,

Q= PT'DP = (xs)ses D(xr)res
= (XSTDXT)S,TES

so an element of () can be written by
Qs = xs" Dxr = (X5, XT)p = VB Ixs(@)xr(2)]

For «a, -
a=P'Df = (xs)ses Df=(xs"Df)ges
so an element of 8 can be written by

as=xs'Df=(f, xs)p= JE [f(z)xs(z)]

O

Note that @ is symmetric matrix and all diagonal entries of @ is 1, i.e.
Qss=1forall SeS.



We can observe that each expectation can be estimated by the sample mean
of the random variable. For L examples (x(j), f (x(j))) : j € [L], we estimate
each element of ) and «a by

Qst= E_ [xs(@)xr]
L
~ 2w (+9) xr (29) = Gor (10)
j=1

as = E_[f(z)xs(z)]

x~D
N R
j=1

It is sufficient for estimation of @) to estimate upper diagonal entries of Q).

Algorithm: GFAA
Input: €,6 > 0, S C 2", Ex(f, D) as the example oracle

Output: a vector B € RE of coefficients of an approximating solution
g = ZSQS ﬁSXS
1. Take L examples by Ex(f, D).

2. Compute Q: for S € 8, S # T, compute

L
- 1 ) )
— E : (4) (@)
Qs : i 2 Xs (f ) XT (x )
and Qrgs := Qs and Qgs:=1forall S € S

3. Compute a: for S € S, compute
1 L

s . = (7) (4)

coim 331 (49) s (o)

4. Solve the linear equation QB = a about B, and output . If the equation
has no solution, output 0 € RK.

We leave to determine the number of examples L, which is preferable to be
within a polynomial of n, €, § and K.

By Lemma 3.1, this algorithm outputs the optimum solution of (6) in an
ideal case that @ is invertible and no numerical error occurs. In this section, we
do not treat the case that () is not invertible.

We ensure that the algorithm works when ) has no very small eigenvalue.



Theorem 3.3. Let y be a positive value, which may depend on n, D, K and
P, if Q = PTDP has no eigenvalue less than y, then the number of examples

L<O (K% 'p*In(Kés)) (12)
is sufficient for GFAA to output coefficients of g € P such that
If=alb < If —g*IB +e (13)

with probability not less than 1—4, and the algorithm works in polynomial time
ofn, K, e !, 6—1 and .
Particularly,
O (K 'p?In(Ké™)) (14)
labeled examples are sufficient, i.e. other examples are not needed to be labeled.

Before going on to the proof, we will give the summary of it.

By Lemma 3.1, the optimum solution is ¢* = PQ'a. If Q is also invertible,
the algorithm outputs coefficients of g = PQ‘ld, otherwise it outputs 0. Note
that @ is invertible because @) has no zero eigenvalue.

Let Eg := Q — Q and e, := & — . Note that Eg is symmetric.

We will bound the difference between the minimum distance mingep || f—gllp
and ||f — g||p, where § is an approximate solution produced by GFAA, by Eq
and e,. The later calculation gives the upper bound:

2
3 . 2K 2
If=alb = Ilf —g*lIp <3K ( 2 I Eqll + MII%II) (15)

assuming that |Eq||, [lea] < /2.
The algorithm achieves the accuracy (13) when the following two conditions
are satisfied.

4

|Eql? < girz e and (16)
2

leall® < 57 € a7)

We determine the number of examples L such that the conditions are satisfied
with probability grater than 1 — 4.

To obtain (15), we make a few assumptions for simplicity. They are justified
when GFAA takes a sufficient number of examples to satisfy (16), (17).

Claim 1. Assume that ||g — ¢*||p <1, then
If =3l = 1f = g1 <3lg — 9"l (18)
Proof.
~ * ~\2 ~ * *
1F=3lb = 1f =g"1b = =2, @)p +IallD +2(F, 9% = 911D
=Q2f-9-9".9"-9p



By Cauchy—Schwarz inequality, and triangle inequality,

12f =9 =9"lplls” —glp

2f-g-9".9"—9)p <
<@lf=9g"llp+lg—9g"llp)llg —9*lIp

and
I =g lp+ 13- g Ip) 13— g"lp < (2+ 19— ¢*1D) 113 — "I

because

If =g"In < If = 0llp = IfI5 =1
By assumption ||§ — g*||3, < 1, we obtain (18). O
Claim 2. ,

15-9"I3 < K [@'a - @ af (19)
Proof.

lg- "% =G-9)"D@-9g")
= (@ ta- Q’la)TPTDP (0'a-q o)
—(G7'a-Q ) Q(@'a- @)
<jQl]|@a -t

Since @ is a positive definite symmetric matrix, and all diagonal entries of @
are 1, [|Q] < tr(Q) = K. Thus, we obtain (19). O

Claim 3.
forta-aa < vEfa - | cfo i e

Proof. By & = o + e, we have

fora-are]<[@ - asr
<ot =@ ol + Q7| fleal

Note that |ag| < 1 for all S € S because ag is the expectation of +1-valued
random variable. Hence

K
laf2 =3 a2, < K
t=1

Thus, we obtain (20). O

We bound each norm of (20). For simplicity, we assume that [|[Eg]l, [|eq || <
/2, which is also justified by (16), (17).



Claim 4. Assume that @ is invertible and |Eqg|| < 1/2, then
~ 2
ot <= (21)
W

Proof. Let A be the smallest eigenvalue of @, and lambda be that of Q. Since
Q, Q and Eg are symmetric,

min="Qz = o' =
min="Q "'z = 071 -

min 2T Egz = || Eg|
z

>l = | e

where z moves on all over the unit sphere {z € R¥ : ||z]| = 1}.
Thus,

X = min (zTQz + zTEQz)
4
> min 2T Qz — max zTEQz
z z
— [ Eell

By the conditions A > p and ||Eg|| < u/2, we have

1 1 1 2
o =5 < < <Z
AT A= EQl T p—p/2 7 p

Claim 5. i 5
|o-e7 < Z 1zl (22)
Proof. We use expansion to matrix power series. By the assumption,
Q' =(Q+EQ) ' =@ (1+Q 'Eq) "
w1

1
-1 -1
Q FE <@ E <—-—===x1
” Q”_” H ” QH_N2 9

Hence Q! is expanded by

_ 12 Q +Q" 12 lEQ

Therefore,

<1 @ Eq|

k=1

HQA _ QAH _ HQl i (_QAEQ)k
=1

_ el Eef _ o~
I-flQ71Eql — 1-[|Q ' Eq]

IEell

Il

2
Si
u?



By (21) and (22), (20) is bounded by

- HeocH

s -] <

Hence (20) is bounded by

2
. 2K
G —g*Ip < K< IIeaH)

If (16) and (17) are satisfied, the assumption of Claim 1 is also satisfied since
g — g*1|% < €/3 < 1. Hence we obtain (17) by evaluation of (18).

We bound the number of examples L which is sufficient for the algorithm to
satisfy both (16) and (17) with probability not less than than 1 — .

We use a well-known fact about relationship of matrix norms. (See [8]) For
a matrix A := [a;;], the following inequality holds:

1A <) al; (23)
i

Claim 6. For Gereralized Fourier Approximation Algorithm,
L<O (K4 (eél + e;l) In (K(S_l)) (24)
examples is sufficient to satisfy the following two conditions:
1Bol* <eq  lleall® < ea (25)

with probability not less than 1 — §.
Particularly,
O (K3 'p?In(Ks)) (26)

labeled examples are sufficient.

Proof. For convenience, we denote each element of maxtrices and vectors by
subscripted numbers, e.g. Qs where s,t € [K].
By (23), it is sufficient to bound the probability such that one of the events

K
1Bal? < 3 (@ —Qu) and (27)

s, t=1

K
leall® = (@ — ar)” (28)

t=1

does not occur.

10



Let 6IQ7 ;,6’Q,6’a be positive values. If both

Pr HQst —Qu| > eb} <dg and
Pr [|Oét — dt| > 6;] < 62!

hold, then both
Pr [as, 3t € [K] s.t. ‘Qst — Oy
Pr[d e [K]s.t. |ay — | > €] < K&,

> e’Q] < K2(5é2 and

also hold. For simplicity, we use a relaxed upper bound about ). Hence both

K
T lz (Qst — Qst)Q > K? (6/62)21 < K26'Q and

s, t=1
K
Pr l (ar —@)* > K (e,)°| < K¢,
t=1
hold.
Let
g = Veq/ K, 8g = 0/2K7,
e, =ea/K, 8 =0/2K
Then both

K 9 5

[”EQH2 > EQ < Pr [ Et:1 (Qst - st) > EQ‘| < ?Q and
ZK 5

Pr[|Eo]* > €] = Pr L_l (ar —a0)* > ea] <5

hold. By union bound, the probability such that one of (25) is not satisfied is

less than §. Thus, (25) is satisfied with probability not less than than 1 — ¢
We have left to bound (29) and (30). For each s,t € [K], let

ad) = ys, ( ()) Xs, (xu)) and
) = f (xm) Xs, (x(j))

Then, Q4 and oy are written by Qg = [ (j)} o =E [bm}
St), b(] ) are pm1 valued independent random values for each other j. Hence
we can bound (29) and (30) by Hoffding’s ineqality as
_ 2L(e,)? L
r[ — Qs >€/Q} < 2exp (— (4Q) > :2exp( 2;Q4> and

~ 2L()? Le,
Prlay — é¢| > €] < 2exp <—(4)> = 2exp (_2K2>

11



Therefore, the number of examples

4 2
LgO(Kln(K> +KIH(K))
€Q ) €o 1)

are sufficient to satisfy both (24). O
Set
4
M
Q= g2 € and
€ 1= —'UQ €
¢ 48K
Then

O (K 'p*In(K6))

examples are sufficient to estimate @) with required accuracy, and they are not
needed to be labeled. And

O (K 'p?In(Ké))

labeled examples are sufficient to estimate c.

Finally, we observe that the algorithm works in polynomial time with re-
spect to n, K and L. Since Q has K2 elements and & has K elements and the
algorithm queries L examples, the number of elementary operations to calculate
all elements of Q and @ is in polynomial of K and L. And the numbers of ele-
mentary operations for product and inverse operation of K dimensional vectors
and matrices is also in polynomial of K. Elementary operations can be done in
polynomial time with respect to the length of variables.

Since L is within polynomial of K, €', §=! and p~!, the algorithm works
in polynomial time of these variables.

3.3 Relating to Distribution

If distribution D has no small probability mass, we ensure that () has no small
eigenvalue, and the algorithm works.

Theorem 3.4. Let pyin := 2" min, D(z) > 0, then the number of examples
L <0 (K% g In (K57)) @1
is sufficient for GFAA to output coefficients of § € P such that
If=3alh <IIf —g"ID +e (32)

with probability not less than than 1—J, and the algorithm works in polynomial
time of n, K, e !, ! and p~'.

It is sufficient to prove that @ has no small eigenvalue.

12



Lemma 3.5. Let Ay, be the smallest eigenvalue of @, then Apin = fmin-

Proof. By the condition, D(z) can be written by D(z) = D'(z) + fimin, where
D'(xz) >0 for all z € {—1,4+1}". We identify D’ as diagonal matrix as well as
D. Then @ can be written by

Q=P'DP=P'D'P+uP'P
= P'D'P 42" timinl
27" PTP = T follows by orthonormality of Fourier basis. Let Q' = PTD'P, Q'
is positive semi-definite symmetric matrix because of D’(z) > 0. Hence
Amin = mzin 2TQz = mzin (ZTQ'Z + uminsz)
> mzin 2YQ'2 + fimin > Himin
where ||z|| = 1. O

We can relax the condition that the distribution has ‘no’ very small probabil-
ity mass to the condition that the distribution has ‘few’ very small probability
mass.

Theorem 3.6. Assume that K < 2°0"). Let u > 0 and S := {z : 2"D(x) < u}.
If there exists 0 < 17 < 1 such that |S| <27, then the number of examples

L<O (K% 'p*In(Ko")) (33)
is sufficient for GFAA to output coefficients of § € P such that
If =gl < If = gD +e (34)

with probability not less than than 1—4, and the algorithm works in polynomial
time of n, K, e !, ! and p~'.

The proof is similar to that of Lemma 3.5.
Lemma 3.7. Apin > 1 (1 — K2_(1—")").

Proof. Let S := {—1,+1}"\S, the complement set of S and U be the uniform
distribution over S. By the condition, D can be written by D(x) = D'(z) +
27"u|S|Us(x) and D'(x) > 0 for all z € {—1,+1}". We identify D’ and U as
diagonal matrix as well as D. Then @) can be written by

Q=P'DP=PT'D'P+27"u|S|PTUP

Let Q' = PTD'P and Q = PTUP. Note that @' and Q are positive semi-
definite symmetric matrices because of D'(z),U > 0. Hence Ay, := min, 27 Qz
is the smallest eigenvalue of @), and

Amin = minz"Qz = min (27Q"z + 27" u|5|27 Qz)
> min 2" Q'z + 27" 41| S| Awmin
Z 2_n,u/|g|5\m1n

13



where ||z|| = 1. B
We remain to show that A, is not too small. The following inequality
follows by the next lemma.

Amin = 27" 1S Amin > 4 (1 — KTU*")”) (35)
O
Lemma 3.8. A\yin|S| > 2" (1 — K2-(-mn)

Proof. By Lemma 3.2, Qrr = E g [x1 () X1 (2)]-

We show that @ is close to the identity matrix, i.e. all off-diagonal entries
of Q are small.

Since Fourier basis is closed under multiplication, without loss of generality,
off-diagonal entries of @ can be written by E . [xr(x)] by some R # (). Since
Xr is orthogonal to xp = 1, there are same numbers of € {—1, +1}" such that
Xr(z) = 41 and xg(z) = —1. For any S of fixed size s and any R # 0, let S’

be a set of same size s such that for all x € " xg(z) = —1, then
|S|IEU r(@)] =Y xr@) <Y xr@)
z€S z€S’

If xgp(zy) = +1 for some z, € S, there must be z_ € S such that yg(z_) = —1.
Hence ) .5 xr(z) can not exceed ) & xr(7). Thus,

1 1 |S|
E xr(@)] < = D xr(@) =z - (+1) - [S| = 7
v 52 S S
By similar way, we can show
5]
- E < =
mEU[XR(x)] <3
Therefore, we obtain
5 181
Qrr| < | B [xr(@)]| < 5
zeU |S|

By Gersgorin disc theorem (See [8]),

_ ) - - S
Amin > min | Q77| — Z |Qrr/| | >21— (K — 1)u
T 7 |S]

Hence,

Ruinl3] = [3] = (K — 1)|s| = 2" - K13|
> on (1 — K2*(1*’7)”)

14



4 Conclusions

We made the algorithm GFAA which is an extension of the Low Degree Algo-
rithm and showed that if the smallest eigenvalue of the matrix whose values are
Fourier coefficients of the data distribution is not too small. We also showed
that the matrix has no very small eigenvalue if the distribution has few very
small probability mass. But the algorithm GFAA may not work when this con-
dition is not satisfied. Our furthur motivation is to modify GFAA to work under
arbitary distributions. We consider whether regularization techniques work.
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