
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Message Passing Algorithms for MLS-3LIN Problem

Osamu Watanabe

October 2011, C–276

Message Passing Algorithms for MLS-3LIN Problem
Osamu Watanabe

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

E-mail: watanabe@is.titech.ac.jp

MLS-3LIN problem is a problem of finding a most likely solution for a

given system of perturbed 3LIN-equations under a certain planted solution

model. This problem is essentially the same as MAX-3XORSAT problem.

We investigate the average-case performance of message passing algorithms

for this problem, where input instances are generated under the planted

solution model with equation probability p and perturbation probability

q. For some variant of a typical message passing algorithm, we prove that

p = Θ(1/(n lnn)) is the threshold for the algorithm to work w.h.p. for any

fixed constant q < 1/2.

1 Introduction

In this paper we investigate the average-case perfor-

mance of message passing algorithms to find a “most

likely solution” for a given system of “perturbed” linear

equations on GF(2). In particular, we consider the case

that equations are restricted to having three variables in

each equation, which we call 3LIN-equations (see, e.g.,

Figure 1). For our average-case scenario, we consider

a “planted solution model” that is the following way to

generate a set of linear equations on n variables for a

given n: for a randomly chosen planted solution, generate

a set of linear equations by putting each 3LIN-equation

that is consistent with the planted solution into the set

with probability p independently. Then perturb some of

those equations by flipping

x1 ⊕ x2 ⊕ x4 = +1

x2 ⊕ x3 ⊕ x4 = −1

x3 ⊕ x5 ⊕ x6 = +1
...

...

An example of 3LIN-equations. In

this paper we use −1 for true (or

1 in GF(2)) and +1 for false (or 0

in GF(2)). Then the exclusive-or

operation ⊕ (or the mod 2 addi-

tion) is simply the integer multi-

plication.

Figure 1. 3LIN-equations

their right hand side values independently at random with some small probability q < 1/2.

Under this scenario, a most likely solution is essentially the planted solution (see Section 2.2

for the explanation). Thus, our problem is to find the planted solution for a given system of

perturbed 3LIN-equations generated by the above scenario. We call this problem Most-Likely

Solution finding problem for perturbed 3LIN-equations, MLS-3LIN for short.

This problem is essentially the same as MAX-3LIN problem (resp., MAX-3XORSAT prob-

lem), a problem of finding an optimal assignment, i.e., an assignment to variables satisfying

the largest number of 3LIN-equations (resp., XOR-clauses). It is well known that MAX-3LIN

(even its restricted version MAX-2LIN) is NP-hard; furthermore, it has been conjectured

[KV05] that MAX-2LIN is hard to approximate well in polynomial-time. On the other hand,

some heuristics seem to work well for solving these problems on average. As an example of

such heuristics, we consider simple message passing algorithms that have been studied for

1

similar problems [OW06, WY10, WY06], and we investigate their average-case performance

on MLS-3LIN instances generated by the above planted solution model.

We show that, for some variant of message passing algorithm, it works w.h.p. if the equation

probability p is greater than c/(n lnn) for sufficiently large c (for any constant perturbation

probability q < 1/2) and it fails w.h.p. if p is smaller than c/(n lnn) for sufficiently small c

(even if q = 0). The positive result is proved by a reduction to MLS-2LIN problem and a

variation of the known spectral analysis given in, e.g., [FO04]. The negative result is proved

by an extension of the analysis of [COW10].

2 Preliminaries

We explain notations that may require some remarks. For any set S, we use #S to denote the

number of elements in S. Vectors are often specified as, e.g., (a1, ..., an), and we use bold italic

letters for denoting vectors. By 1 we denote a vector (+1, ...,+1) consisting of all +1; unless

specified otherwise, its size should be determined by context. We use Greek letters, e.g., ξ for

unit vectors, and for any vector u, let u to denote its normalized one, i.e., u/‖u‖. The inner

product of two vectors u and v is denoted as 〈u,v〉.
Let lnn denote the natural logarithm, while the binary logarithm (i.e., the base 2 logarithm)

is denoted by log. Let o(1) denote any function that goes 0 when n goes ∞. By “w.h.p.” (with

high probability) we mean the probability 1− o(1).

2.1 MLS-3LIN Problem and its Planted Solution Model

When discussing linear equations over GF(2), we use +1 for 0 (or false) and −1 for 1 (true).

Then the GF(2) addition or the XOR operation ⊕ is simply the integer multiplication; that

is, we have +1⊕+1 = +1, −1⊕−1 = +1, etc. This notation is somewhat convenient because

we can now use 0 (for undefined) and assume that x⊕ 0 = 0⊕ x = 0.

In the following discussion, we consider MLS-2LIN and MLS-3LIN problems. But since

notions necessary for our discussion are defined in the same way for both problems, we explain

them by using MLS-2LIN as an example. Throughout this paper, we use n to denote the

number of variables and m to denote the number of equations. We use x1, ..., xn for denoting

variables, and a 2LIN-equation is an equation like x2⊕x3 = −1 that has two variables (added

by ⊕) on the left-hand side of the equation and either +1 or −1 on the right-hand side of

the equation. Each equation is denoted by, e.g., e, ei, etc, and we use E = {e1, ..., em} to

denote a system of 2LIN-equations. We often use a vector a = (a1, ..., an) ∈ {−1,+1}n as an

assignment to variables x1, ..., xn

Remark. We assume that the left-hand side of a kLIN-equation is of the form xi1 ⊕· · ·⊕xik
for some i1 < i2 < · · · < ik. Hence, there are

(
n
k

)
possible patterns for the left-hand side of

kLIN equations over n variables.

For a distribution model, we use the planted solution model explained in Introduction. For

simplicity, we fix our planted solution to 1 = (+1, ...,+1); hence, the “correct” right-hand

side value of each equation is always +1. Throughout this paper, we use p to denote equation

2

density, a parameter that determines the probability of selecting each equation, and q to denote

perturbation probability, a parameter that determines the probability of flipping each value to

−1, the value that is inconsistent to our assumed planted solution 1. We use E to denote

a generated set of 2LIN-equations, which is indeed an instance of MLS-2LIN problem. Note

that E is a random variable, and throughout this paper, all the probabilities are essentially

on this random variable. For example, the number m of equations of a random MLS-2LIN

instance is a random variable following the binomial distribution Bin(n(n−1)/2, p). Similarly,

the number of equations consistent (resp., inconsistent) with the planted solution follows the

binomial distribution Bin(m, 1− q) (resp., Bin(m, q)).

Consider any set E of 2LIN-equations. Note first that under the planted solution model

(with parameters p > 0 and 0 < q < 1/2), E can be generated from any planted solution

a ∈ {−1,+1}n; also note that the generation probability Pr[E|a] varies depending on a. Now

MLS-2LIN problem (Most-Likely Solution finding problem for 2LIN-equations) is to find a

solution a that maximizes Pr[E|a]. It should be noticed here that the notion of “solution” for

MLS-2LIN depends on a way to generate instances. But as shown below, under our planted

solution model, the notion of “solution” is robust for any p > 0 and q < 1/2.

2.2 Basic Properties of Solutions of MLS-3LIN Problem

Here we consider MLS-3LIN problem for our explanation, but the corresponding properties

hold for MLS-2LIN problem.

Fix parameters p > 0 and q < 1/2, and consider any instance E for MLS-3LIN problem.

Since q < 1/2, it is clear that a solution of E (w.r.t. MLS-3LIN problem) is nothing but an

optimal assignment, i.e., an assignment a ∈ {−1,+1}n that maximizes the number of satisfi-

able equations of E, in other words, a solution of E w.r.t. MAX-3LIN problem. Thus, (under

our planted solution model) both MLS-3LIN and MAX-3LIN problems ask for essentially the

same solutions.

Proposition 1 For any p > 0 and q < 1/2, and for any set E of 3LIN-equations, a maximizes

Pr[E|a] (under the planted solution model w.r.t. p and q) if and only if it is an optimal

assignment of E.

Consider an instance E generated from some planted solution a. If a is used as an assign-

ment, then on average m(1 − q) equations are satisfied while mq equations are not. It has

been shown [BO09] that this is indeed best possible with high probability; furthremore, there

is any other comparable solution if p is large enough.

Proposition 2 [BO09] For any sufficiently large constants c and c′, let p and q be any pa-

rameters satisfying both (1) p > c log n/n2, and (2) q < 1/2− c′
√

log n/(n2p). Consider a set

E of 3LIN-equations generated from some planted solution a under the planted solution model

w.r.t. p and q. Then w.h.p. the planted solution a is the unique solution of E for MLS-3LIN

problem; in other words, a is the unique optimal assignment for E.

Remark. The same property holds for MLS-2LIN if both (1) p > c log n/n, and (2) q <

1/2− c′
√

log n/(np) hold for sufficiently large c and c′.

3

procedure Alg 2LIN for MLS-2LIN problem

input An instance E = {e1, ..., em} for MLS-2LIN problem;

assign +1 or −1 to x1 and assign 0 to all the other variables; (∗1)
repeat MAXSTEP times do {

for all xi, 1 ≤ i ≤ n, in parallel do {

xi := sgn

∑
e∈Ei

me→i

; (∗2)

}
if no change is made on ~x = (x1, ..., xn) then exit; (∗3)

}
output (sgn(x1), ..., sgn(xn));

end-procedure

Note (see also explanation in the text):

• Ei = the set of equations containing xi.

• me→i = a “message” from e to xi (either −1, +1, or 0), and

• sgn(z) = +1 (resp., = −1) if z > 0 (resp., z < 0), and it is 0 if z = 0.

Figure 2. A simple message passing algorithm for MLS-2LIN problem

3 Message Passing Algorithms

We consider simple message passing algorithms such as algorithm Alg 2LIN for MLS-2LIN

stated in Figure 2. Following this description, let us see the outline of the algorithm. Algorithm

Alg 2LIN uses n integer variables ~x = (x1, ..., xn) to keep the current candidate for an optimal

assignment. Initially at (∗1) only x1 is given either +1 or −1, and the others are set 0. Then

at (∗2) of the main loop, values of all xi’s are updated in parallel, which is regarded as one

“updating process”. The algorithm executes this updating process for at most MAXSTEP times,

or until values of ~x are “stabilized”, meaning that no change is made after the updating process.

Both experimentally and theoretically it is enough to set MAXSTEP to 10 log n.

The core of the algorithm is the updating process at (∗2). Here the new value of each xi is

determined by taking the majority vote of all messages from equations containing xi. Let e

be any 2LIN-equation containing xi, and assume that it is of the form “xi ⊕ xj = b”. Then a

“message” me→i from e to variable xi is computed as me→i := xj ⊕ b. For example, if b = −1

and xj = +1, then me→i = −1. This is the value of xi in order to satisfy the equation e with

the current value of xj . Then the new value for xi is determined by taking the majority vote

of these messages.

Algorithm for MLS-3LIN

Algorithm Alg 3LIN we consider for MLS-3LIN problem is almost the same as Alg 2LIN.

A message is computed similarly for 3LIN-equations. For example, for e = “xi⊕xj⊕xk = b”,

4

a message me→i from e to xi is computed as me→i := xj ⊕xk ⊕ b, which has the same meaning

as the 2LIN case. Note here that no message or 0 message is computed as me→i if either xj
or xk is 0, i.e., undetermined.

Relatively big difference is the number of variables that are assigned +1 or −1 at (∗1).
This number should be more than one for MLS-3LIN problem, because otherwise all messages

become 0 and no update occurs at (∗2). In our Alg 3LIN we assign +1 or −1 to x1, ..., xlogn
variables. Note that the number of all possible assignments to x1, ..., xlogn is 2logn = n;

hence, by iterating just n times, we can try all possible assignments and one of them must

be consistent with the planted solution for generating the input instance E. Thus, we may

assume that the correct values are assigned to x1, ..., xlogn at (∗1).

4 Analysis of an Message Passing Algorithm for MLS-2LIN

In order to analyze the average-case performance of some message passing algorithm for

MLS-3LIN, we first show that some variant of Alg 2LIN performs well for relatively small p.

Our analysis is an application of the analysis of spectral algorithms that have been studied

extensively [AK97, CGLS03, FO04]. In particular, we follow the outline given in [FO04] and

use a key technical lemma from [CGLS03].

4.1 Modification of the Algorithm ⇒ Spectral Algorithm

For our analysis, we modify algorithm Alg 2LIN on three points.

First, we introduce some preprocessing on a given input set E of 2LIN-equations. Fix any

sufficiently large constant calg > 0. We remove variables that appear more than calgnp times

and equations containing such variables. Note that each variable appears (n − 1)p times on

average; hence, the number of such variables with much larger occurrence should be very

small, which is shown formally in the next section. Thus, even if we use some fixed assignment

for those removed variables, introduced error is negligible. Let n′ be the number of variables

remained after this preprocessing; we can assume1 that all variables appear at most calgn
′p

times.

Secondly, we simplify the updating formula at (∗2) by omitting the application of the sign

function. That is, a new updating process is

for all xi, 1 ≤ i ≤ n, in parallel do {
xi :=

∑
e∈Ei

me→i;

}

 (∗4)

~x := ~x/‖~x‖;

Here we introduce normalization, which is necessary in practice (but not so important theo-

retically) since otherwise the values of ~x grow very quickly.

1Precisely speaking, we may have to remove some more variables due to the change of n. But we can show

that this removal process converges very quickly; see, e.g., [Coj06] for its detail treatment.

5

Thirdly, we change the stopping condition at (∗3). We determine the “stabilization” by

checking whether sign is not changed at all variables xi, 1 ≤ i ≤ n, after the updating process.

Now for a given set E of 2LIN-equations, consider an n× n matrix AE = (aij), where

aij = aji =


1, if xi ⊕ xj = +1 exists in E,

−1, if xi ⊕ xj = −1 exists in E,

0, otherwise.

Then it is easy to see that the above (∗4) is expressed as ~x := AE~x
T; That is, the updating

process is nothing but one iteration of the power method for computing the first eigenvector

for AE , i.e., an eigenvector with the largest eigenvalue. Thus, let us call the modified algorithm

AlgS 2LIN (where “S” for spectral). From this view point and by using well known facts on

the power method, the following property can be shown easily.

Proposition 3 For any p > 0 and q < 1/2, consider a random instance E for MLS-2LIN

problem generated under the planted model w.r.t. p and q. Let ξ1 = (ξ1,1, ..., ξ1,n) be the first

eigenvector of AE. Then w.h.p. algorithm AlgS 2LIN on E terminates in MAXSTEP steps,

yielding (sgn(ξ1,1), ..., sgn(ξ1,n)) as an output assignment aans.

Now we would like to show that the assignment aans produced by AlgS 2LIN is close to

the planted solution 1 with high probability. Here in order to measure the difference between

two solutions, we use

diff(1,aans)
def
= 1− 〈1,aans〉

n
= 1− 〈1,aans〉.

Then our goal is precisely stated as follows. (Although we fix the form of p to c/n for some

constant, the result holds for larger p. Note that we sometimes require p ≤ log nO(1)/n in the

later analysis; but a simpler argument is applicable for larger p.)

Theorem 1 Let p = c/n and q = 1/2− δ, where c > 0 and δ, 0 < δ ≤ 1/2, are any constants

w.r.t. n. Let aans denote the output of AlgS 2LIN on a random instance E for MLS-2LIN

problem generated under the planted solution model w.r.t. p and q. Then for some constant

d0 > 0, if cδ is sufficiently large, then w.h.p. we have diff(1,aans) ≤ d0(cδ)
−1.

From this theorem, for any fixed δ > 0, if c is large enough, then we can guarantee that the

difference diff(1,aans) between the planted solution and the obtained solution is small w.h.p.

4.2 Spectral Analysis of AlgS 2LIN

We explain the outline of the proof of Theorem 1. In this abstract, all proofs of technical

lemmas are omitted, which can be found in Appendix.

Technically we base the following lemma reported as Lemma 39 in [CGLS03]. (The lemma

is stated in a slightly generalized form; see Appendix for the explanation.)

6

Lemma 1 Let c̃0 > 0 be some sufficiently large constant. For any p̃ ′ such that c̃0/n ≤ p̃ ′ ≤
(lnn)O(1)/n, let D = (dij)1≤i,j≤n be an n× n random symmetric matrix such that dii = 0 for

each 1 ≤ i ≤ n, and dij = 1 (resp., dij = 0) with probability p̃ ′ (resp., 1 − p̃ ′) independently

for each 1 ≤ i < j ≤ n. Then for any p̃ ≥ p̃ ′ and any c̃alg > 1, there exists some c̃1 > 0 such

that the following three statements hold w.h.p.

(1) Let V ′′ = {i ∈ {1, ..., n}|
∑n

j=1 dij > c̃algnp̃}, and V ′ = {1, ..., n} − V ′′. Let n′ = #V ′ and

D′ = (dij)i,j∈V ′ be the induced n′ × n′ matrix. Then we have n′ ≥ (1− exp(−np̃/c̃1))n.

(2) For any unit vector ξ⊥1, we have ‖D′ξ‖ ≤ c̃1
√

n′p̃.

(3) ‖D′1− n′p̃ ′1‖ ≤ c̃1
√

n′p̃.

For our discussion, we introduce new notations. Let c0 denote the constant c̃0 of the above

lemma. Fix p = c/n and q = 1/2 − δ with some c and δ satisfying two conditions (C1) and

(C2), where (C1) ⇐⇒ c ≥ c0 and 0 < δ ≤ 1/2, while (C2) is specified later. For sufficiently

large n, let E be 2LIN-equations over n variables generated randomly following the planted

solution model w.r.t. p and q. Let AE = (aij) denote the matrix defined from E as before. We

fix n, E, and AE throughout this subsection.

First we show that not so many variables are removed by the preprocessing of AlgS 2LIN.

The following lemma is easily obtained by applying the above lemma to matrix (|aij |) with c̃1
slightly smaller than calg.

Lemma 2 The number of variables removed by the preprocessing of AlgS 2LIN is bounded

by n exp(−c/d) for some d > 0.

Thus, even if we use some fixed assignment to those removed variables (and they are all

incorrect w.r.t. the planted solution), its effect in diff(1,aans) is bounded by exp(−c/d).

In the following, we redefine n, E, and AE to the number of variables, the set of 2LIN-

equations, and its corresponding matrix after the preprocessing. Below we simply state A for

this AE . Let λ1 ≥ λ2 ≥ · · · ≥ λn be A’s eigenvalues, and for each i, 1 ≤ i ≤ n, let ξi be the

unit eigenvector corresponding to λi.

Now let B = (bij) and C = (cij) denote matrices that have 1 at each ij-entry such that

aij = 1 and aij = −1 respectively. Then we have A = B − C; also roughly, we have Pr[bij =

1] = p(1 − q) and Pr[cij = 1] = pq. Furthermore, though B and C are not independent, we

may assume that bij , 1 ≤ i < j ≤ n (resp., cij , 1 ≤ i < j ≤ n) are mutually independent.

Then we can apply Lemma 1 to B and C from which the following lemma follows. (Here and

throughout this subsection, we use p′ to denote p(1− 2q) = cδ/n.)

Lemma 3 The following holds w.h.p. for some constant c1 > 0.

(1) For any unit vector η⊥1 and for any unit vector ξ, we have |〈Aη, ξ〉| ≤ 2c1
√
np.

(2) For any λi, 2 ≤ i ≤ n, we have |λi| ≤ 3c1
√
np.

(3) ‖A1− np′1‖ ≤ 2c1
√
np.

Now we define the condition (C2) ⇐⇒ 6c1
√
np ≤ np′ (⇐⇒ (6c1δ

−1)2 ≤ c). By using (2)

of the above lemma, we can show the following lower bound for 〈1, ξ1〉.

7

Lemma 4 Assume that (C2) holds for c and δ. Then w.h.p. we have

〈1, ξ1〉 ≥

√
1− 16c21

np′
=

√
1− 16c21

cδ
.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let αn be the number of nonpositive element of ξ1. Here we have

the following constraints:

n∑
i=1

ξ21,i = 1, and

n∑
i=1

ξ1,i ·
1√
n

≥
√

1− 16c21
cδ

.

Then αn becomes the largest if αn elements of ξ1 is 0 and the other (1− α)n elements of ξ1
is 1/

√
(1− α)n. In this case, we have√

(1− α)n√
n

≥
√

1− 16c21
cδ

,

which is equivalent to α ≤ 16c21(cδ)
−1.

Note that diff(1,aans) is the sum of α and the error from the removed variables at the

preprocessing. Since the latter is bounded by exp(−c/d) that is bounded by d′(cδ)−1 for some

d′ > 0 (for sufficiently large c), the bound of the theorem is shown with d0 = 4c21 + d′. �

5 Analysis of an Message Passing Algorithm for MLS-3LIN

Armed with the analysis of the previous section, we now analyze some message passing type al-

gorithm for MLS-3LIN problem. Again though we base the algorithm Alg 3LIN, we consider

some modifications to make it easier to analyze. Our idea is simple; we regard the step (∗1)
of the algorithm as a reduction from MLS-3LIN to MLS-2LIN. Recall that in the execution of

Alg 3LIN, variables x1, ..., xlogn are assigned values (where we may assume that this partial

assignment is consistent with the planted solution because all possible combinations of values

are examined), and then the main iteration of the updating process is executed. Thus we may

expect that some number of 2LIN-equations are generated by this partial assignment and that

the main iteration is somewhat similar to executing Alg 2LIN on those 2LIN-equations. We

analyze an algorithm that executes exactly in this way. That is, we consider an algorithm that

executes as follows: (1) assign values to x1, ..., xlogn; (2) collect 2LIN-equations2 obtained by

this partial assignment to some set E′, and then (3) execute AlgS 2LIN on E′. The algorithm

runs (1) − (3) with all possible partial assignments. We call this algorithm as AlgR 3LIN

(where “R” is for reduction).

For this algorithm, it is not so hard to obtain some positive result similar to MLS-2LIN

problem.

2Precisely speaking, if more than two equations with the same left-hand side are obtained, then its right-hand

side is determined by taking the majority vote.

8

Theorem 2 Let p = c/(n log n) and q = 1/2 − δ, where c > 0 and δ, 0 < δ ≤ 1/2, are any

constants w.r.t. n. Let aans denote the output of AlgR 3LIN on a random instance E for

MLS-3LIN problem generated following the planted solution model w.r.t. p and q. Then for

some constant d0 > 0, if cδ is sufficiently large, then w.h.p. we have diff(1,aans) ≤ d0(cδ)
−1.

Proof. Consider the point in the execution of AlgR 3LIN where the partial assignment

consistent with the planted solution is chosen. Let E′ be the set of 2LIN-equations obtained

from E by this partial assignment. It suffices to show that the distribution of E′ is equivalent

to the one under the planted solution model for MLS-2LIN w.r.t. p̂ and q̂ with p̂ ≥ c/(2n) and

q̂ ≤ q.

First it is clear that each pair xi and xj appears in the left-hand side of an equation in E′

independently. Furthermore, the probability p̂ that each pair appears can be bounded by

p̂ = 1− (1− p)logn ≥ 1− 1 + p log n− · · · . ≥ c

2n
.

On the other hand, since no new error is introduced, it is easy to show that q̂ ≥ q′. �

Next we discuss the limitation of Alg 3LIN3. For this, we consider the extreme case where

q = 0, that is, the case where no perturbation is introduced4. We show below even in this

case the algorithm terminates without determining values of many variables if p is small. Note

that when we start from the updating process from the partial assignment to x1, ..., xlogn that

is consistent with the planted solution, the value of each xi, log n + 1 ≤ i ≤ n, is determined

correctly once some equation e containing xi sends a message me→i to xi. This occurs if and

only if the other two variables in e are assigned some value. On the other hand, the value

of xi is not determined if no message is sent to xi from all equations that xi appears. If this

happens on many variables in an early stage of the execution, the algorithm stops without

giving any value to many variables.

A process of passing such messages is called “propagation”, and it has been investigated in

depth in [BO09, COW10]. By extending the argument in [COW10], we can show the following

limitation of Alg 3LIN.

Theorem 3 For any positive c less that 1 (say, c = 0.99), consider the execution of Alg 3LIN

on a random instance E for MLS-3LIN problem generated under the planted solution model

w.r.t. p = c/(n log n) and q = 0. Then w.h.p. the algorithm terminates by assigning nonzero

values to less than log n variables of xlogn+1, ..., xn.

Proof. Following [COW10] we introduce a propagation process for investigating how many

variables get assigned some nonzero value during the execution of Alg 3LIN. (Note that

the propagation process defined below is not used for simulating the execution of Alg 3LIN;

rather it is used to estimate situation/staistics at the end of the execution.)

3Though we state our result for Alg 3LIN, a similar result is possible for AlgR 3LIN.
4Note that in this case one can use the standard method in linear algebra to obtain the optimal solution

(which is the solution satisfying all given equations). Here we consider this extreme case in order to show the

limit of message passing algorithms.

9

We classify n variables into three types: dead, alive and neutral. Let Dt, At, and Nt denote

respectively the set of dead, alive, and neutral variables at time t of the process. We also use

Dt, At, and Nt to denote their size. Initially, D0 = {x1}, A0 = {x2, ..., xlogn}, and the rest

is put into N0. At each time t = 1, 2, ..., we select one variable xj from At−1, and for every

xi ∈ Nt−1, check whether there is an equation e in E containing xi, xj , and some xk ∈ Dt−1.

If so, we move xi from Nt−1 to At. After all possibilities are examined, xj is moved from At−1

to Dt. Thus, we have Dt = t and Nt = n − t − At. Also note that the process terminates at

time t if and only if either At = 0 or Nt = 0. We use T to denote this stopping time. We

say that the process succeeds if Nt gets empty first and fails if At gets empty first. It is easy

to see that the process succeeds if and only if the algorithm Alg 3LIN assigns values to all

variables.

Let Xt denote the number of variables that are newly added to At. Then
∑

1≤t≤T Xt is the

number of variables that are assigned +1 or −1 value by Alg 3LIN. Here we show that T

as well as
∑

1≤t≤T Xt is small. Clearly, the process does not terminates until time log n − 1

because A0 contains initially log n− 1 variables. Here we consider t0 = 2 log n− 1, and discuss

the probability that T ≥ t0. Suppose that T ≥ t0, i.e., the process does not terminate before

time t0. Then we have At ≥ 1 for all t ∈ [t0], and since one variable is moved from A to D at

each time, at least t0 − (log n − 1) (= log n) new alive variables must be created; that is, we

have
∑

1≤t≤t0
Xt ≥ logn. On the other hand, the following lemma states that this is unlikely

to occur. Thus, w.h.p. the process terminates before time t0 and at most t0 variables are

assigned some nonzero value. This proves the theorem. �

Lemma 5 W.h.p. we have ∑
1≤t≤t0

Xt < log n.

Proof. Note that the process is deterministic, and the randomness is due to the set E of

equations that are randomly generated. Here instead of executing the process for a given and

fixed E, for each equation e, the decision whether it is put into E or not is made randomly when

e is examined during the propagation process, which occurs at most once during the whole

process. Under this interpretation, we may consider that Xt is a random variable binomially

distributed Bin(n− t−At−1, 1− (1− p)t).

Here we note that Xt = Bin(n − t − At−1, 1 − (1 − p)t) is dominated by a much simpler

random variable X̃t = Bin(nt, p). Using X̃t, we can bound by

Pr

 ∑
1≤t≤t0

Xt ≥ t0

 ≤ Pr

 ∑
1≤t≤t0

X̃t ≥ t0


= Pr

 Bin

 n ·
∑

1≤t≤t0

t, p

 ≥ t0

 = Pr

[
Bin

(
nt0(t0 + 1)

2
, p

)
≥ t0

] (1)

Let µ0 denote the expectation of the last binomial distribution. Then since we assume that

c = 1.99, we have

µ0 =
nt0(t0 + 1)

2
· p = c(2 log n− 1) < 1.98 log n.

10

Thus, t0 = 2 log n + 1 is much larger than the expectation. Then by using Chernoff bound,

the last probability of (1) can be bounded by o(1). �

Acknowledgement

The author would like to thank Dr. Amin Coja-Oghlan, Dr. Mikael Onsjö, and Dr. Masaki

Yamamoto for their collaborations on related topics, which lead to this work.

References

[AK97] N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable

graphs, SIAM J. Comput. 26(6), 1733–1748, 1997.

[BO09] R. Berke and M. Onsjö, Propagation connectivity of random hyptergraphs, in

Proc. 5th Symposium on Stochastic Algorithms, Foundations and Applications

(SAGA’09), Lecture Notes in Computer Science 5792, 117–126, 2009.

[Coj06] A. Coja-Oghlan, A spectral heuristic for bisecting random graphs, Random Struct.

and Algorithms 29(3), 351–398, 2006.

[CGLS03] A. Coja-Oghlan, A. Goerdt, A. Lanka, and F. Schädlich, Techniques from combi-

natorial approximation algorithms yield efficient algorithms for random 2k-SAT,

Theoret. Comput. Sci. 329, 1–45, 2004.

[CMV07] A. Coja-Oghlan, E. Mossel, and D. Vilenchnik, A spectral approach to analyzing

belief propagation for 3-coloring, CoRR abs/0712.0171, 2007.

[COW10] A. Coja-Oghlan, M. Onjsö, and O. Watanabe, Propagation connectivity of random

hypergraphs, in Proc. 14th Intl. Workshop on Randomization and Computation

(RANDOM’10), Lecture Notes in Computer Science 6302, 490–503, 2010.

[FO04] U. Feige and E. Ofek, Spectral techniques applied to sparse random graphs, Ran-

dom Structures and Algorithms 27, 251–275, 2005.

[FKS81] J. Friedman, J. Kahn, and E. Szemeredi, On the second eigenvalue in random

regular graphs, in Proc 21st Annu ACM Sympos. Theory of Computing (STOC’89),

587–598, 1989.

[KV05] S.A. Khot and N.K. Vishnoi, The unique games conjecture, integrality gap for cut

problems and embeddability of negative type metrics into L1, in Proc. of the 46th

IEEE Sympos. on Foundations of Comp. Sci. (FOCS’05), 53–62, 2005.

[OW06] M. Onsjö and O. Watanabe, A simple message passing algorithm for graph

partition problem, in Proc. 17th Int’l Sympos. on Algorithms and Computation

(ISAAC’06), LNCS 4288, 507–516, 2006.

11

[WY10] O. Watanabe and M. Yamamoto, Average-case analysis for the MAX-2SAT prob-

lem, Theoret. Comput. Sci., 411(16-18): 1685–1697, 2010.

[WY06] O. Watanabe and M. Yamamoto, Belief propagation and spectral methods, Report

C-248, Dept. of Math. and Comp. Sci., Tokyo Inst. of Tech., Nov. 2007.

Appendix A: Proof of Lemmas

Here we prove Lemma 3 and Lemma 4. Symbols are used in the same way as in the body

without explanation.

We begin with explaining how to apply Lemma 1 to matrices B and C. For this we need

to consider the original set E of equations before the preprocessing. In order to distinguish

symbols from the body, we use here Â = (âij) to denote the matrix AE defined for the original

E. Similarly, let B̂ = (̂bij) and Ĉ = (ĉij) denote matrices that have 1 at each ij-entry such

that âij = 1 and âij = −1 in Â respectively. Then we have Pr(̂bij = 1) = p(1 − q) and

Pr(ĉij = 1) = pq. Furthermore, (̂bij)i<j (resp., (ĉij)i<j) are mutually independent. Thus, we

can apply Lemma 1 to them.

Here we remark some technical points for proving Lemma 1. The parameter p̃ is not used in

the original lemma in [CGLS03], but it is easy to modify their proof to show the lemma stated

in this paper. Also from their proof, we can see that item (3) of the lemma can be proved

even for D; that is, removing entries with too many 1’s is only needed for proving the bound

of item (2).

Now we consider our matrices B̂ and Ĉ. By the preprocessing of AlgS 2LIN all ith entries

of B̂ (resp., Ĉ) such that
∑

j b̂ij ≥ calgp (resp.,
∑

j ĉij ≥ calgp) are removed from B̂ (resp.,

Ĉ), which is enough to show the corresponding bounds of item (2) of Lemma 1. Thus, we can

apply Lemma 1 to show the following bounds.

Lemma A.1 There exists some constant c1 > 0 with which the following holds w.h.p.

(1) For any unit vector ξ⊥1, we have ‖Bξ‖ ≤ c1
√
np and ‖Cξ‖ ≤ c1

√
np.

(2) ‖B1− np(1− q)1‖ ≤ c1
√
np and ‖C1− npq1‖ ≤ c1

√
np.

Now we prove Lemma 3 with the constant c1 above.

Lemma 3 The following holds w.h.p.

(1) For any unit vector η⊥1 and for any unit vector ξ, we have |〈Aη, ξ〉| ≤ 2c1
√
np.

(2) For any λi, 2 ≤ i ≤ n, we have |λi| ≤ 3c1
√
np.

(3) ‖A1− np′1‖ ≤ 2c1
√
np.

Proof. (1) Note first the following holds for any real symmetric matrix D.

‖Dζ‖ ≤ α ⇐⇒ |〈Dζ,ν〉| ≤ α for all unit vector ν.

Hence, for any unit vector η⊥1 and for any unit vector ξ, we have

|〈Aη, ξ〉| = |〈Bη, ξ〉 − 〈Cη, ξ〉|
≤ |〈Bη, ξ〉|+ |〈Cη, ξ〉| ≤ 2c1

√
np

12

(2) Let S0 be the set of vectors perpendicular to 1. Then since dim(S0) = n− 1, by Theorem

of Courant-Fischer, we have

λ2 ≤ max
η∈S0

〈Aη,η〉 ≤ 2c1
√
np.

On the other hand, to bound λn, we express the nth eigenvector as ξn = α1 + βη, where

α, β ≥ 0, α2 + β2 = 1, and η is a unit vector perpendicular to 1. Then we have

λn = 〈Aξn, ξn〉 = 〈A(α1+ βη), α1+ βη〉
= α2〈A1,1〉+ 2αβ〈Aη,1〉+ β2〈Aη,η〉
≥ (2αβ + β2)(−2c1

√
np) ≥ − 3c1

√
np.

Here we used the facts that 〈Ax,y〉 = 〈x, Ay〉 due to the symmetry of A, and that 〈A1,1〉 ≥ 0

w.h.p.

(3) The claim is immediate from the following.

‖A1− np′1‖ = ‖A1− np(1− 2q)1‖ = ‖(B − C)1− (np(1− q)− npq)1‖
= ‖B1− np(1− q)1‖+ ‖C1− npq1‖ ≤ 2c1

√
np.

�

Next we prove Lemma 4.

Lemma 4 Assume that (C2) holds for c and δ. Then w.h.p. we have

〈1, ξ1〉 ≥

√
1− 16c21

np′
=

√
1− 16c21

cδ

Proof. Let α = 〈1, ξ1〉. Then we have 1 = αξ1 + βη, where η is a unit vector perpendicular

to ξ1. Thus,

〈1, ξ1〉 = α =
√

1− β2.

On the other hand, letting 1 = α1ξ1 + · · ·+ αnξn, we have α = α1 and β2 =
∑n

i=2 α
2
i . Thus,

the lemma is proved by bounding
∑n

i=2 α
2
i as follows.

4c21np
′ ≥

∥∥A1− np′1
∥∥2 =

∥∥∥∥∥A
(

n∑
i=1

αiξi

)
− np′

(
n∑

i=1

αiξi

)∥∥∥∥∥
2

=

∥∥∥∥∥
(

n∑
i=1

αiλiξi

)
− np′

(
n∑

i=1

αiξi

)∥∥∥∥∥
2

=

n∑
i=1

(
(λi − np′)αiξi

)2
≥

n∑
i=2

(np′ − λi)
2α2

i ≥ (np′ − 3c1
√
np)2

n∑
i=2

α2
i ≥

(
np′

2

)2 n∑
i=2

α2
i .

The last bound is from the condition (C2). �

13

