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Abstract

We give a complete Hilbert-style axiomatization for ECTL, which is an extension
of the Computation Tree Logic (CTL) with a modal operator “infinitely often along
some path”.

1 Introduction

We treat extensions of the propositional Computation Tree Logic (CTL) (see, e,g, [5, 9]
for general information on CTL and its neighbors). CTL has eight modal operators ∀X,
∃X, ∀G, ∃G, ∀F, ∃F, ∀U, and ∃U. For example, ∀Xα (or ∃Xα), ∀Gβ (or ∃Fβ), and γ ∀U δ
(or γ ∃U δ) represent “α holds for any (or some) next state”, “β holds for any (or some)
reachable state”, and “along any (or some) path, γ holds until δ”, respectively. There are
a lot of extensions of CTL; among them, the logic CTL* is well studied. CTL* has six
modal operators ∀, ∃, X, G, F, and U. For example, ∀∃FXGXF∀p is a CTL*-formula but
not a CTL-formula. Note that, for example, “∀G” is a single operator in CTL while this
represents successive applications of two operators G and ∀ in CTL*.

In this paper we treat the logic ECTL (by Emerson and Halpern [3]), which is a logic
between CTL and CTL*. ECTL is obtained from CTL by adding two modal operators
∀FG and ∃GF where ∀FGα and ∃GFβ represent “along any path, there exists a state after
which α always holds”, and “there is a path along which β holds infinitely often” respec-
tively (these two modalities are not expressible in CTL; see [3]). ECTL is a reasonable
extension of CTL in the following sense: For any sequence ~s of the unary modal operators
∀, ∃, X, G, and F where the first element of ~s is ∀ or ∃, there is a sequence ~s′ of the
unary modal operators ∀X, ∃X, ∀G, ∃G, ∀F, ∃F, ∀FG, and ∃GF such that two formulas ~sp
and ~s′p are equivalent (this will be shown in Section 2). For example, the CTL*-formula
∀∃FXGXF∀p is equivalent to the ECTL-formula ∃X∃X∃GFp. A CTL*-formula whose out-
ermost operator is ∀ or ∃ is called a state formula; hence the above property says that
each unary modality of state formulas of CTL* is expressible in ECTL.

In general, to find a simple Hilbert-style axiomatization is a challenging problem in
the study of non-classical logics. For example, its solutions for CTL* were published
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Figure 1: Property of models (1)
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in the 2000s (Reynolds [7, 8]), while an axiomatization for CTL was given in the 1980s
(Emerson and Halpern [2]). This paper gives a solution for ECTL — we prove that ECTL
is axiomatized by adding the following schemata to CTL.

∀G(α → β) → ∃GFα → ∃GFβ
∃GFα ↔ ∃X∃F(α ∧ ∃GFα)
∀G(α → ∃X∃Fα) → α → ∃GFα
∀FGα ↔ ¬∃GF¬α

The first schema is a kind of “K-axiom” for ∃GF, the second one says that ∃GFϕ is a fixed
point of ∃X∃F(ϕ ∧ •), the third one is an induction axiom, and the forth one shows the
duality between ∀FG and ∃GF.

We show the completeness theorem: If a formula is not provable in the above system
of ECTL, then there exists a finite model in which the formula is false in some state. As
usual this is shown by constructing a model, of which each state is a kind of maximally
consistent set; and in this construction, the following properties of models play a key role
to define the accessibility relation. (For a formula ψ, the term “ψ-state” below denotes
any state satisfying ψ.)

(1) Let v, α and β be formulas such that v implies both α ∃U β and ¬β. If there is a
v-state x, there is a path starting from x along which α holds until β. Then, on
this path, there must be the last v-state x′ before the β-state, and the next state of
x′ satisfies the formula (α ∧¬v) ∃U β (see Figure 1 where © is an α-state and F is
a β-state).

(2) Let v, α and β be formulas such that v implies both α ∀U β and ¬β. If there is a
v-state x, then there must be a last v-state x′ before β-states, and all the next states
of x′ satisfy the formula (α ∧ ¬v) ∀U β (see Figure 2 where © is an α-state and F
is a β-state).

(3) Let v and ϕ be formulas such that v implies both ∀FG¬ϕ and ϕ. If there is a v-state
x, then there must be a last v-state x′ (∵ otherwise we can construct a path along
which infinitely many sates satisfy v and hence ϕ), and all the next states of x′

satisfy the formula ∀G¬v (see Figure 3).

Incidentally, the properties (1) and (2) were used by Lange and Stirling [6] for focus games
and by Brünnler and Lange [1] and by Gaintzarain et al. [4] for sequent calculi.

The structure of this paper is as follows. In Section 2 we define models of ECTL and
CTL*, and we show that each unary modality of state formulas of CTL* is expressible
in ECTL. In Section 3 we introduce Hilbert-style axiomatization of ECTL, and we show
derivability of certain formulas and of inference rules. In Section 4 we describe an outline
of a standard completeness-proof for normal modal logics. In Section 5 we introduce
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Figure 2: Property of models (2)
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Figure 3: Property of models (3)
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“consistent c-valuations”, which will become the states of our model. In Section 6 we
give an elaborate definition of the accessibility relation, and we show some lemmas on it.
These definitions and lemmas are the main technical contribution of this paper. Finally
in Section 7 we prove the completeness.

2 Semantics

In this section, we give a standard definitions of formulas and models for ECTL and
CTL*.

ECTL-formulas are constructed from the following symbols: propositional variables
and constants > and ⊥; unary logical operator ¬; binary logical connectives ∧, ∨, →,
and ↔; unary modal operators ∀X, ∃X, ∀G, ∃G, ∀F, ∃F, ∀FG and ∃GF; and binary modal
connectives ∀U and ∃U. CTL*-formulas are constructed from the following symbols:
propositional variables/constants and unary/binary logical symbols as above; unary modal
operators ∀, ∃, X, G, and F; and binary modal connective U. Propositional variables are
denoted by p, q, . . ., and formulas are denoted by α, β, ϕ, ψ, . . .. For example, GF∀Xp,
∃GF∀Xp, and ∃GF∀∀Xp are CTL*-formulas and the second one is also an ECTL-formula
while the others are not. Note that the intended meaning of the ECTL-formula p ∀U q (or
p ∃U q) and CTL*-formula ∀(p U q) (or ∃(p U q), respectively) are equivalent. Parentheses
are omitted by the convention that unary operators bind more stronger than binary
connectives; ∧,∨,∀U,∃U, U bind more stronger than → and ↔; and that α1 → α2 →
· · · → αn is α1 → (α2 → (· · · → (αn−1 → αn) · · · )). For example, ∀G(α→β)→∃GFα→
∃GFβ (the first axiom of ECTL in the previous section) is (∀G(α → β)) → ((∃GFα) →
(∃GFβ)).

By “model”, we mean any triple 〈S,R, V 〉 where S is a nonempty set, R is a binary
relation on S satisfying (∀x ∈ S)(∃y ∈ S)(xRy) (we call such a relation serial), and V is a
mapping from S ×PropVar to {t, f} where PropVar is the set of propositional variables.
The elements of S are called states, and R is called the accessibility relation. A model is
said to be finite if the set S of states is finite. A path is an infinite sequence 〈x0, x1, x2, . . .〉
of states such that (∀i ≥ 0)(xiRxi+1). If σ = 〈x0, x1, x2, . . .〉 is a path, then the state xi

is denoted by σ(i), and the path 〈xn, xn+1, xn+2, . . .〉 is denoted by σ |n, which is obtained
from σ by deleting initial n elements. For any two paths σ and σ′, we write “σ =0 σ′” if
and only if σ(0) = σ′(0). We say that a path σ is an x-path if and only if σ(0) = x.

Truth values of ECTL-formulas are evaluated in each state. The notion “in a model
M = 〈S,R, V 〉, a state x satisfies an ECTL-formula ϕ”, written by “M,x |= ϕ” (or
“x |= ϕ” for short), is inductively defined as follows.

x |= >. x 6|= ⊥.

x |= p ⇐⇒ V (x, p) = t.

x |= ¬α ⇐⇒ x 6|= α.

x |= α ∧ β ⇐⇒ x |= α and x |= β.

Logical connectives ∨, →, ↔ are evaluated similarly.

x |= ∀Xα ⇐⇒ (∀y)(xRy ⇒ y |= α).

x |= ∃Xα ⇐⇒ (∃y)(xRy & y |= α).

x |= ∀Gα ⇐⇒ (∀σ : x-path)(∀n ≥ 0)(σ(n) |= α).

x |= ∃Gα ⇐⇒ (∃σ : x-path)(∀n ≥ 0)(σ(n) |= α).
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x |= ∀Fα ⇐⇒ (∀σ : x-path)(∃n ≥ 0)(σ(n) |= α).

x |= ∃Fα ⇐⇒ (∃σ : x-path)(∃n ≥ 0)(σ(n) |= α).

x |= ∀FGα ⇐⇒ (∀σ : x-path)(∃n ≥ 0)(∀m ≥ n)(σ(m) |= α).

x |= ∃GFα ⇐⇒ (∃σ : x-path)(∀n ≥ 0)(∃m ≥ n)(σ(m) |= α).

x |= α ∀U β ⇐⇒ (∀σ : x-path)(∃n ≥ 0)
(
σ(n) |= β & (∀m < n)(σ(m) |= α)

)
.

x |= α ∃U β ⇐⇒ (∃σ : x-path)(∃n ≥ 0)
(
σ(n) |= β & (∀m < n)(σ(m) |= α)

)
.

In the last two clauses, the state σ(n), which satisfies β, is called the witness of α ∀U β
(or α ∃U β).

Truth values of CTL*-formulas are evaluated in each path. The notion “in a model
M = 〈S,R, V 〉, a path σ satisfies a CTL*-formula ϕ”, written by “M,σ |= ϕ” (or “σ |= ϕ”
for short), is inductively defined as follows.

σ |= >. σ 6|= ⊥.

σ |= p ⇐⇒ V (σ(0), p) = t.

σ |= ¬α ⇐⇒ σ 6|= α.

σ |= α ∧ β ⇐⇒ σ |= α and σ |= β.

Logical connectives ∨, →, ↔ are evaluated similarly.

σ |= ∀α ⇐⇒ (∀σ′ =0 σ)(σ′ |= α).

σ |= ∃α ⇐⇒ (∃σ′ =0 σ)(σ′ |= α).

σ |= Xα ⇐⇒ σ | 1 |= α.

σ |= Gα ⇐⇒ (∀n ≥ 0)(σ |n |= α).

σ |= Fα ⇐⇒ (∃n ≥ 0)(σ |n |= α).

σ |= α U β ⇐⇒ (∃n ≥ 0)
(
σ |n |= β & (∀m < n)(σ |m |= α)

)
.

We say that an ECTL-formula (or CTL*-formula) ϕ is valid if and only if M,x(or σ) |=
ϕ for any model M and any state x (or any path σ). Moreover we say that two formulas
ϕ and ψ are equivalent, written by “ϕ ≡ ψ”, if and only if the formula ϕ ↔ ψ is valid.

As is mentioned in the previous section, each unary modality of state formulas of
CTL* is expressible in ECTL:

Theorem 1 For any sequence ~s of the unary modal operators ∀, ∃, X, G, and F of CTL*
where the first element of ~s is ∀ or ∃, there is a sequence ~s′ of the unary modal operators
∀X, ∃X, ∀G, ∃G, ∀F, ∃F, ∀FG, and ∃GF of ECTL such that ~sp ≡ ~s′p.

Proof We have the following equations in CTL*.

∀∀ϕ ≡ ∀ϕ. ∃∃ϕ ≡ ∃ϕ. ∀∃ϕ ≡ ∃ϕ. ∃∀ϕ ≡ ∀ϕ.
GGϕ ≡ Gϕ. FFϕ ≡ Fϕ. GFGϕ ≡ FGϕ. FGFϕ ≡ GFϕ.
GXϕ ≡ XGϕ. FXϕ ≡ XFϕ. ∀Xϕ ≡ ∀X∀ϕ. ∃Xϕ ≡ ∃X∃ϕ.
∀GFϕ ≡ ∀G∀Fϕ. ∃FGϕ ≡ ∃F∃Gϕ.
∀p ≡ p. ∃p ≡ p.

Using these, we can construct ~s′ from ~s. For example, suppose ~s = ∀∀∃FXFGGXFGXG∃∀.
We have (1) ∀∀∃ϕ ≡ ∃ϕ, (2) FXFGGXFGXGϕ ≡ XXXFFGGFGGϕ ≡ XXXFGϕ, and
(3) ∃∀p ≡ p. Therefore ~sp = ∀∀∃FXFGGXFGXG∃∀p ≡ ∃XXXFGp ≡ ∃X∃X∃X∃FGp ≡
∃X∃X∃X∃F∃Gp. QED
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3 Axiomatization

The rest of this paper is devoted to the completeness of Hilbert-style axiomatization
for ECTL; hence, from now on, “formula” will mean “ECTL-formula”. To simplify the
argument, we decrease the number of logical and modal symbols. We adopt >, ¬, ∧,
∀X, ∀U, ∃U, and ∃GF as primitive symbols, and the others are considered to be the
abbreviations:

⊥ = ¬>. ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ). → and ↔ are defined as usual.

∃Xϕ = ¬∀X¬ϕ.

∀Fϕ = >∀U ϕ. ∃Gϕ = ¬∀F¬ϕ = ¬(>∀U¬ϕ).

∃Fϕ = >∃U ϕ. ∀Gϕ = ¬∃F¬ϕ = ¬(>∃U¬ϕ).

∀FGϕ = ¬∃GF¬ϕ.

“Q” will be used as a variable on {∀,∃}. For example, “α QU β ↔ (β∨(α∧QX(α QU β)))”
denotes two formulas “α ∀U β ↔ (β ∨ (α ∧ ∀X(α ∀U β)))” and “α ∃U β ↔ (β ∨ (α ∧
∃X(α ∃U β)))”.

We fix a Hilbert-style axiomatization (axiom schemata and inference rules) of CTL;
for example, the following are due to Goldblatt [5]:

(Tautology) Instances of classical tautologies.
(K∀X) ∀X(α → β) → ∀Xα → ∀Xβ.
(D) ∃X>.
(∀U) α ∀U β ↔ (β ∨ (α ∧ ∀X(α ∀U β))).
(∃U) α ∃U β ↔ (β ∨ (α ∧ ∃X(α ∃U β))).

α → β α

β
(modus ponens) α

∀Xα
(∀X-necessitaion)

β ∨ (α ∧ ∀Xγ) → γ

α ∀U β → γ
(∀U-induction)

β ∨ (α ∧ ∃Xγ) → γ

α ∃U β → γ
(∃U-induction)

We call this system HCTL. Then our main system HECTL for ECTL is defined by adding
the following axiom schemata to HCTL.

(K∃GF) ∀G(α → β) → ∃GFα → ∃GFβ.
(∃GF) ∃GFα ↔ ∃X∃F(α ∧ ∃GFα).
(∃GF-induction) ∀G(α → ∃X∃Fα) → α → ∃GFα.

Note that the forth axiom ∀FGα ↔ ¬∃GF¬α in Section 1 is a tautology because of the
abbreviation of ∀FG.

By “` ϕ”, we mean “ϕ is provable in HECTL”. The purpose of this paper is to show
the soundness and completeness of HECTL with respect to arbitrary and finite models:

Theorem 2 (Main Theorem) The following three conditions are equivalent for any
formula ϕ0. (1) ` ϕ0. (2) ϕ0 is valid. (3) ϕ0 is valid with respect to finite models, i.e.,
M,x |= ϕ0 for any finite model M and any state x.

Proof Soundness (1 ⇒ 2 ⇒ 3) is easily shown by verifying that each axiom is valid and
that each rule preserves validity of formulas. Completeness (3 ⇒ 1) is hard as usual; the
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contraposition (¬1 ⇒ ¬3) will be proved by Theorem 41 at the end of this paper. QED

In the rest of this section, we show some lemmas which give a list of provable formulas
and derivable inferences of HECTL. In the following, finite sets of formulas are denoted by
Γ,∆, . . .. If Γ = {γ1, γ2, . . . , γn}, then

∧
Γ and

∨
Γ denote the formulas γ1 ∧ γ2 ∧ · · · ∧ γn

(or > if n = 0) and γ1 ∨ γ2 ∨ · · · ∨ γn (or ⊥ if n = 0) respectively; moreover if • is one of
the unary operators, then •Γ denotes the set {•γ1, •γ2, . . . , •γn}. By “Γ ` ϕ”, we mean
`

∧
Γ → ϕ. As usual, for example, “Γ, α, β,∆ ` γ” means “Γ ∪ {α, β} ∪ ∆ ` γ”.

We say that an inference

Γ1 ` ϕ1 Γ2 ` ϕ2 · · · Γn ` ϕn

∆ ` ψ

is derivable if and only if there is a derivation from n formulas
∧

Γ1 → ϕ1, . . . ,
∧

Γn → ϕn

to the formula
∧

∆ → ψ in HECTL. The inference rules of classical logic and of normal
modal logic (∀X is the modal operator) are available; for example:

Γ ` ϕ ∨ ϕ′ ϕ′, ∆ ` ψ

Γ,∆ ` ϕ ∨ ψ

Γ ` ϕ

∀XΓ ` ∀Xϕ ` ∀X(α ∧ β) ↔ ∀Xα ∧ ∀Xβ

We will tacitly use such inferences.

Lemma 3 (Property of ∀G) The inference rules

` γ → ϕ ∧ ∀Xγ

` γ → ∀Gϕ
(∀G-induction)

` ϕ

` ∀Gϕ
(∀G-necessitaion)

∀GΓ ` ϕ

∀GΓ ` ∀Gϕ
(∀G-R)

ϕ, Γ ` ψ

∀Gϕ, Γ ` ψ
(∀G-L)

are derivable, and the following schemata (∀G), (K∀G) and (4∀G) are provable.

(∀G) ∀Gϕ ↔ ϕ ∧ ∀X∀Gϕ.
(K∀G) ∀G(α → β) → ∀Gα → ∀Gβ.
(4∀G) ∀Gϕ → ∀G∀Gϕ.

Proof ∀G-induction rule is equivalent to an instance of ∃U-induction rule:

¬ϕ ∨ (> ∧ ∃X¬γ) → ¬γ

>∃U¬ϕ → ¬γ
(∃U-ind.)

∀G-necessitation rule is obtained from ∀G-induction rule by replacing γ by > using the
fact ` ∀X>. The scheme (∀G) is provable from the axiom (∃U) where α = >, β = ¬ϕ.
The scheme (K∀G) is provable as follows.

(∵ ∀G)

∀G(α→β) → (α→β)

(∵ ∀G)

∀Gα → α

∀G(α→β) ∧ ∀Gα → β

(∵ ∀G)

∀G(α→β) → ∀X∀G(α→β)

(∵ ∀G)

∀Gα → ∀X∀Gα

∀G(α→β) ∧ ∀Gα → ∀X(∀G(α→β) ∧ ∀Gα)

∀G(α→β) ∧ ∀Gα → β ∧ ∀X(∀G(α→β) ∧ ∀Gα)

∀G(α→β) ∧ ∀Gα → ∀Gβ
(∀G-ind.)

The schema (4∀G) is provable using (∀G) and ∀G-induction rule. Derivability of the rules
(∀G-R/L) is easily shown (like the rules of the modal logic S4). QED
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Lemma 4 (1) ∀G(α → α′), ∀Xα ` ∀Xα′.

(2) ∀G(α → α′), α QU β ` α′ QU β.

(3) ∀G(β → β′), α QU β ` α QU β′.

(4) ∀G(α → α′), ∃GFα ` ∃GFα′.

Proof We show only an outline of (2).

(∵ QU)

β ∨ (α′ ∧ QX(α′ QU β)) → α′ QU β
....

β ∨ (α ∧ QX(∀G(α→α′) → α′ QU β)) → ∀G(α→α′) → α′ QU β

α QU β → ∀G(α→α′) → α′ QU β
(QU-ind.)

QED

Note that Lemma 4(4) is the axiom (K∃GF), which will be used in not only the next lemma
but also Lemma 29 in Section 6

Lemma 5 The following inference rule is derivable.

α ↔ α′

ϕ[α] ↔ ϕ[α′]

where ϕ[α′] is the formula that is obtained from the formula ϕ[α] by replacing one occur-
rence of subformula α by α′.

Proof By induction on ϕ, using Lemmas 3 and 4. QED

Lemma 5 guarantees that provability of a formula is preserved when we replace a subfor-
mula by another equivalent formula. We will tacitly use this property.

Lemma 6 (Property of ∀U and ∃U) (1) β ` α QU β.

(2) ` >QU>.

(3) α QU β ` α ∨ β.

(4) α QU β ` β ∨ QX(α QU β).

(5) α,QX(α QU β) ` α QU β.

Proof Use the axioms (∀U) and (∃U). QED

Lemma 7 The following inference rule, which is a variant of QU-induction, is derivable.

∀G∆, β ∨ QX((α ∧ γ)QU β) ` γ

∀G∆, α QU β ` γ
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Proof First we consider the case that ∆ is empty. We have the following derivation.

β ∨ QX((α ∧ γ)QU β) ` γ (assumption) (3.1)

β ∨ (α ∧ QX((α ∧ γ)QU β)) ` β ∨ QX((α ∧ γ)QU β) (tautology) (3.2)

β ∨ ((α ∧ γ) ∧ QX((α ∧ γ)QU β) ` (α ∧ γ)QU β (axiom (QU)) (3.3)

β ∨ (α ∧ QX((α ∧ γ)QU β)) ` (α ∧ γ)QU β (∵ 3.1, 3.2, 3.3) (3.4)

α QU β ` (α ∧ γ)QU β (∵ 3.4 and QU-ind.) (3.5)

(α ∧ γ)QU β ` (α ∧ γ) ∨ β (Lemma 6(3)) (3.6)

α QU β ` γ (∵ 3.1, 3.5, 3.6) (3.7)

For a general case, put δ =
∧
∀G∆.

δ, β ∨ QX((α ∧ γ)QU β) ` γ (assumption) (3.8)

δ ` ∀G((δ → γ) → γ) (from Lemma 3) (3.9)

∀G((δ→γ) → γ), β∨QX(((α∧(δ→γ))QUβ) ` β∨QX(((α∧γ)QUβ)

(from Lemma 4) (3.10)

δ, β ∨ QX((α ∧ (δ→γ))QU β) ` γ (∵ 3.8, 3.9, 3.10)

β ∨ QX((α ∧ (δ→γ))QU β) ` δ → γ

To this last formula, we apply the former derivation (from 3.1 to 3.7, where “γ” = “δ →
γ”), and we get the formula α QU β ` δ → γ, which is equivalent to the required formula
δ, α QU β ` γ. QED

Lemma 8 (Property of ∃GF) (1) ∃GFϕ ` ∃X∃GFϕ.

(2) ∃X∃GFϕ ` ∃GFϕ.

(3) ∃GFϕ ` ∃F(ϕ ∧ ∃X∃GFϕ).

Proof We show an outline:

(1) ∃GFϕ ` ∃X∃F(ϕ ∧ ∃GFϕ) (∵ ∃GF axiom)
` ∃X

(
(ϕ ∧ ∃GFϕ) ∨ ∃X∃F(ϕ ∧ ∃GFϕ)

)
(∵ ∃Fψ ` ψ ∨ ∃X∃Fψ)

` ∃X(∃GFϕ ∨ ∃GFϕ). (∵ ∃GF axiom)

(2) ∃X∃GFϕ ` ∃X∃X∃F(ϕ ∧ ∃GFϕ) (∵ ∃GF axiom)
` ∃X∃F(ϕ ∧ ∃GFϕ) (∵ ∃X∃Fψ ` ∃Fψ)
` ∃GFϕ. (∵ ∃GF axiom)

(3) ∃GFϕ ` ∃X∃F(ϕ ∧ ∃GFϕ) (∵ ∃GF axiom)
` ∃F(ϕ ∧ ∃X∃GFϕ). (∵ ∃X∃Fψ ` ∃Fψ and (1))

QED

Note that the ∃GF-induction axiom is not used in this section. It will be used in the
proof of Lemma 30 in Section 6.
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4 Completeness of K

It is well known that the smallest normal modal logic K is axiomatized by Tautology and
K∀X axioms and modus ponens and ∀X-necessitation rules, where ∀X is the only modal
operator (usually written as ¤). K is complete with respect to finite Kripke models:

Proposition 9 (Completeness of K) If ϕ is not provable in K, then there exists a
finite Kripke model M = 〈S,R, V 〉 (R may not be serial) such that M,x 6|= ϕ for some
x ∈ S.

In this section, we show an outline of the standard proof of this completeness in order
to utilize it as a base of our argument.

Definition 10 (valuation, •t, •f, •∗) Let Γ be a finite set of formulas. A valuation of
Γ is a function from Γ into {t, f}. If v is a valuation of Γ , then vt and vf are sets of
formulas and v∗ is a formula as follows.

vt = {ϕ | ϕ ∈ Γ and v(ϕ) = t}.
vf = {ϕ | ϕ ∈ Γ and v(ϕ) = f}.

v∗ =
∧

vt ∧
∧

(¬vf).

Definition 11 (•t/∀x, • B •) Let Γ be a finite set of formulas. For any valuation v of
Γ , we define

vt/∀x = {ϕ | ∀Xϕ ∈ Γ and v(∀Xϕ) = t}.

Then a relation B between valuations of Γ is defined as follows.

v B v′ ⇐⇒ vt/∀x ⊆ v′
t ⇐⇒

(
v(∀Xϕ)=t ⇒ v′(ϕ)=t

)
for any ∀Xϕ in Γ .

Definition 12 (K-consistent) A valuation v is said to be K-consistent if and only if
the formula ¬(v∗) is not provable in K.

Then the required counter-model M = 〈S,R, V 〉 for ϕ is constructed as follows. S is
the set of K-consistent valuations of Sub(ϕ) where Sub(ϕ) is the set of subformulas of ϕ.
R = B. V (v, p) = v(p). The condition (∃x ∈ S)(M,x 6|= ϕ) is shown by the following
propositions.

Proposition 13 For any ψ ∈ Sub(ϕ) and any v ∈ S, we have the following. (1) If
v(ψ) = t, then M, v |= ψ. (2) If v(ψ) = f, then M, v 6|= ψ.

Proposition 14 If ϕ is not provable in K, then there is a K-consistent valuation v of
sub(ϕ) such that v(ϕ) = f.

Our completeness proof for ECTL is an elaborate extension of the above argument.
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5 C-valuations

In our counter-model for HECTL, each state is not a valuation but a “valuation together
with additional information” — we call this a c-valuation (c for “conditional” or “con-
trolled”). The additional information is utilized to control the accessibility between states.
In this section, we define c-valuations and we show some basic properties of them.

Definition 15 (c-valuation, designated formula) Let S be a finite set of formulas
that contains at least one until-formula, where an “until-formula” is a formula of the
form α QU β. A c-valuation of S is a 4-tuple 〈F ,H, U, v〉 that satisfies the following three
conditions.

• Both F and H are sets of valuations of S. (F and H are finite because so is S.)

• U is an until-formula in S. (U is called the designated formula of this c-valuation.)

• v is a valuation of S.

Definition 16 (intended formula, consistent) Let F = {vF
1 , vF

2 , . . . , vF
m} and H =

{vH
1 , vH

2 , . . . , vH
n } be sets of valuations of a set S. The intended formula of a c-valuation

〈F ,H, α QU β, v〉 is

∀G¬(vF
1 )

∗∧∀G¬(vF
2 )

∗∧· · ·∧∀G¬(vF
m)

∗∧
((

α∧¬(vH
1 )

∗∧¬(vH
2 )

∗∧· · ·∧¬(vH
n )

∗)
QU β

)
∧ v∗.

(See Def.10 for “∗”.) We say that a c-valuation is consistent if and only if the negation
of its intended formula is not provable in HECTL.

By the definitions, we have:

Proposition 17 The following conditions are equivalent where ∀G¬F∗ = {∀G¬(v∗) | v ∈
F} and ¬H∗ = {¬(v∗) | v ∈ H}.

• A c-valuation 〈F ,H, α QU β, v〉 is consistent.

• ∀G¬F∗,
(
α∧

∧
¬H∗)QU β 6` ¬(v∗).

• ∀G¬F∗,
(
α∧

∧
¬H∗)QU β, vt 6`

∨
vf.

• ∀G¬F∗,
(
α∧

∧
¬H∗)QU β, v∗ 6`

∨
vf

For example, suppose that S = {p∃U q, p, q} and valuations v1, v2, v3 are as follows.

v1(p ∃U q) = v1(p) = v1(q) = t.
v2(p ∃U q) = v2(p) = t, v2(q) = f.
v3(p ∃U q) = t, v3(p) = v3(q) = f.

Then a c-valuation 〈{v1, v2}, {v2, v3}, p ∃U q, v3〉 is consistent if and only if

∀G¬((p∃Uq)∧p∧ q), ∀G¬((p∃Uq)∧p∧¬q),(
p ∧ ¬((p∃Uq)∧p∧¬q) ∧ ¬((p∃Uq)∧¬p∧¬q)

)
∃U q, p ∃U q 6` p ∨ q.
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Definition 18 (C(·)) For any finite set S of formulas, C(S) denotes the set of consistent
c-valuations of S.

C(S) will be the very set of states in our counter-model. From now on, when we write
“C(S)”, we assume that S is a finite set of formulas that contains at least one until-formula.

Lemma 19 C(S) is a finite set.

Proof |C(S)| ≤ 2m2mnm where m (= 2|S|) is the number of valuations of S, and n is the
number of until-formulas in S. QED

Lemma 20 If 〈F ,H, α QU β, v〉 ∈ C(S), then we have the following.

(1) v 6∈ F .

(2) If v(β) = f, then v 6∈ H.

(3) v(α QU β) = t.

Proof (1) If v ∈ F , then ∀G¬F∗ ` ¬(v∗) by Lemma 3, and the c-valuation is inconsistent
by Proposition 17. (2) If v ∈ H and v(β) = f, then

(
α∧

∧
¬H∗)QU β ` ¬(v∗) ∨

∨
vf by

Lemma 6(3) (∵ α∧
∧
¬H∗ ` ¬(v∗) and β `

∨
vf ), and the c-valuation is inconsistent by

Proposition 17. (3) Similarly to (1) and (2), using the fact (α ∧
∧
¬H∗)QU β ` α QU β

(∵ Lemma 4(2)). QED

Lemma 21 Let T0 and F0 be disjoint subsets of a finite set S of formulas, and Γ be a
finite set of formulas. If Γ, T0 6`

∨
F0, then there is a valuation v of S such that T0 ⊆ vt,

F0 ⊆ vf, and Γ, vt 6`
∨

vf.

Proof By the standard argument as follows. Let σ1, σ2, . . . , σn be an enumeration of
the set S − (T0 ∪ F0). We show that there are two disjoint sets Tn and Fn such that
Tn ∪ Fn = S, T0 ⊆ Tn, F0 ⊆ Fn, and Γ, Tn 6`

∨
Fn. We define Ti and Fi, for i = 1, . . . , n,

as follows. Suppose Ti−1 and Fi−1 are already defined and Γ, Ti−1 6`
∨

Fi−1, then at least
one of the following holds: (1) Γ, Ti−1, σi 6`

∨
Fi−1. (2) Γ, Ti−1 6`

∨
Fi−1 ∨ σi. Then

we define 〈Ti, Fi〉 = 〈Ti−1 ∪ {σi}, Fi−1〉 if the condition (1) holds, otherwise 〈Ti, Fi〉 =
〈Ti−1, Fi−1 ∪ {σi}〉. QED

6 Accessibility relation

From now on, we fix a formula ϕ0 such that 6` ϕ0. The goal of this paper is to show the
existence of a finite counter-model for ϕ0. For this purpose, the accessibility relation is
defined in this section.

In the case of K, the set Sub(ϕ0) is sufficient to construct a counter-model for ϕ0 (see
Section 4); however we need a larger set, called S0, for HECTL.
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Definition 22 (S0) A set S′
0 of formulas is defined by

S′
0 = Sub(ϕ0,>∀U>,>∃U>,∀X¬>)

where Sub(Γ ) is the set of subformulas of the formulas in Γ . Then a set S0 is defined by

S0 = Sub
(
{∀X(α ∀U β) | α ∀U β ∈ S′

0} ∪ {∀X¬(α ∃U β) | α ∃U β ∈ S′
0} ∪

{∀X¬(>∃U(α ∧ ¬∀X¬∃GFα)) | ∃GFα ∈ S′
0}

)
.

S0 is defined so as to satisfy the following property:

Lemma 23 (1) S0 is a finite set including ϕ0,>∀U>,>∃U>, and ∀X¬>.

(2) S0 is closed under subformulas.

(3) If α ∀U β ∈ S0, then ∀X(α ∀U β) ∈ S0.

(4) If α ∃U β ∈ S0, then ∀X¬(α ∃U β) ∈ S0.

(5) If ∃GFα ∈ S0, then >∃U(α ∧ ¬∀X¬∃GFα) ∈ S0.

Proof Easy. QED

The following definitions (especially Def. 26) are the core of our completeness proof.

Definition 24 (next, Next) Let U = {U0, U1, . . . , UN−1} be the set of until-formulas in
S0 where Ui 6= Uj if i 6= j. We define a function next(·) on U by

next(Ui) = U((i+1) mod N).

Then, for each valuation v of S0, we define a function Nextv(·) on U by

Nextv(U) = nextm(U), where m = min{m > 0 | v(nextm(U)) = t}.

For example, if U = {U0, U1, . . . , U4}, v(U0) = v(U2) = t, and v(U1) = v(U3) =
v(U4) = f, then Nextv(U0) = U2 and Nextv(U3) = U0. The formula Nextv(U) is defined
only if there exists a formula Ui such that v(Ui) = t.

Definition 25 (∃GF-condition, witness condition) Two conditions on a c-valuation
〈F ,H, α QU β, v〉 of S0 are defined as follows.

(∃GF-condition) If v(∃GFϕ) = f, then v(ϕ) = f, for any ∃GFϕ in S0.

(witness condition) v(β) = t.

Definition 26 (Ã) We define a binary relation Ã on C(S0) as follows. 〈F ,H, U, v〉 Ã
〈F ′,H′, U ′, v′〉 if and only if all the conditions below are satisfied.

(0) 〈F ,H, U, v〉, 〈F ′,H′, U ′, v′〉 ∈ C(S0). (See Def. 18 for C(S0).)

(1) v B v′. (See Def. 11 for B.)
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Table 1: Admissible next states of 〈F ,H, U, v〉.

When U = (· · · ∀U · · · ) witness cond.
Yes No

∃GF-cond. Yes ♥ ♦
No ♠ ♣

When U = (· · · ∃U · · · ) witness cond.
Yes No

∃GF-cond. Yes ♥ ♥,♦
No ♠ ♠,♣

(2) 〈F ′,H′, U ′, v′〉 is one of the following forms

〈F , ∅, Nextv′(U), v′〉 (♥)

〈F , H∪{v}, U, v′〉 (♦)

〈F∪{v}, ∅, Nextv′(U), v′〉 (♠)

〈F∪{v}, ∅, U, v′〉 (♣)

where Table 1 specifies the suits (♥, ♦, ♠, or ♣) depending on the conditions of
〈F ,H, U, v〉.

For example, if U is an ∃U-formula and 〈F ,H, U, v〉 satisfies neither the ∃GF-condition
nor witness condition, then 〈F ′,H′, U ′, v′〉 must be ♠ or ♣.

Our counter-model is M0 = 〈C(S0), Ã, V0〉 where V0 will be defined in the next sec-
tion. M0 is expected to have a property that each state 〈F ,H, α QU β, v〉 satisfies its
intended formula

∧(
∀G¬F∗, (α∧

∧
¬H∗)QU β, v∗). According to this expectation, the

above Definition 26 can be intuitively explained as follows.

Let x = 〈F ,H, U, v〉 be a state of M0. For each until-formula α QU β in S0, if
v(α QU β) = t then we need a witness (or witnesses) (i.e., a state y such that
x Ã · · · Ã y and y satisfies β). The designated formula represents top-priority
until-formula of which we seek a witness (or witnesses).

If x satisfies the witness condition, this means x itself is a witness of the
designated formula, and then we shift the top-priority in the next states ♥
and ♠.

If x fails in the witness condition and the designated formula is α QU β, then x
is a v∗-state and v∗ implies both ¬β and α QU β. In this case, as is explained
in Section 1, there is a last v∗-state x′ before β-states. Then the state ♦ is
intended to be a next state of not x but x′.

If x fails in the ∃GF-condition, then x is a v∗-state and v∗ implies both ϕ and
∀FG¬ϕ for some ϕ. In this case, as is explained in Section 1, there is a last
v∗-state x′. Then the states ♠ and ♣ are intended to be next states of not x
but x′.

In the rest of this section, we show some important properties concerning the relation
Ã. From now on, the expression 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 denotes an infinite Ã-sequence

〈F0,H0, U0, v0〉 Ã 〈F1,H1, U1, v1〉 Ã 〈F2,H2, U2, v2〉 Ã · · ·

in C(S0).
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Lemma 27 For any until-formula U in S0 and any c-valuation 〈F ′,H′, U ′, v′〉 in C(S0),
the until-formula Nextv′(U) is defined and it is different from U .

Proof Lemmas 6(2) and 23(1), and consistency of 〈F ′,H′, U ′, v′〉 guarantee that v′(>∀U>) =
v′(>∃U>) = t. This fact and the definition of Nextv′(U) imply this Lemma 27. QED

Lemma 28 (1) There is no infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 such that all
the designated formulas U0, U1, U2, . . . are a same formula.

(2) Suppose ∃GFϕ ∈ S0. For any infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉, there
is a number k such that (∀i ≥ k)(vi(∃GFϕ) = f implies vi(ϕ) = f). In other
words, in any infinite Ã-sequence, the ∃GF-condition (for ∃GFϕ) always holds after
somewhere.

Proof (1) Assume that an infinite sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 satisfies Ui = Ui+1

for all i. Lemma 27 and definition of Ã show that each Ã-step is defined by ♦ or ♣, and
the witness condition always fails. Then Lemma 20 shows that either Fi ( Fi+1 (in ♣)
or (Fi = Fi+1 and Hi ( Hi+1) (in ♦) for each i. However, such an infinite Ã-sequence
cannot exist because Fi and Hi are subsets of a finite set.

(2) Assume that an infinite sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 contains infinitely many
c-valuations that fail in the ∃GF-condition for ∃GFϕ. Then it contains infinitely many ♠
or ♣. This means that Fi ⊆ Fi+1 for all i, and Fi ( Fi+1 for infinitely many i; however
this is impossible as (1). QED

Lemma 29 If a c-valuation 〈F ,H, U, v〉 does not satisfy the ∃GF-condition, then ∃GFv∗ `
¬v∗.

Proof By the premise, there is a formula ϕ such that ∃GFϕ ∈ vf and ϕ ∈ vt. Then
we have (1) ∃GFϕ ` ¬v∗, and (2) v∗ ` ϕ, which implies (2+) ∃GFv∗ ` ∃GFϕ using
Lemma 4(4). The facts (1) and (2+) imply ∃GFv∗ ` ¬v∗. QED

Lemma 30 Let 〈F ,H, U, v〉 be a c-valuation in C(S0) and ∀Xψ be a formula in S0. If
v(∀Xψ) = f, then we have the following.

(1) There is a valuation v′ such that v B v′, v′(ψ) = f, and the c-valuation ♥ is consis-
tent.

(2) If the designated formula U is an ∀U-formula and 〈F ,H, U, v〉 does not satisfy the
witness condition, then there is a valuation v′ such that v B v′, v′(ψ) = f, and the
c-valuation ♦ is consistent.

(3) If 〈F ,H, U, v〉 does not satisfy the ∃GF-condition, then there is a valuation v′ such
that v B v′, v′(ψ) = f, and the c-valuation ♠ is consistent.

(4) If the designated formula U is an ∀U-formula and 〈F ,H, U, v〉 satisfies neither the
∃GF-condition nor the witness condition, then there is a valuation v′ such that vBv′,
v′(ψ) = f, and the c-valuation ♣ is consistent.
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Proof (1) First we show

∀G¬F∗, vt/∀x 6` ψ. (6.1)

Assume otherwise, then we have

∀X∀G¬F∗, ∀Xvt/∀x ` ∀Xψ,

and the c-valuation 〈F ,H, U, v〉 would be inconsistent (i.e., ∀G¬F∗,
(
α∧

∧
{¬H∗}

)
QU β, vt `∨

vf where U = α QU β) because of the facts

∀G¬(vi
∗) ` ∀X∀G¬(vi

∗) for all vi ∈ F (∵ Lemma 3)

and

∀Xψ ∈ vf (premise of the lemma) and ∀Xvt/∀x ⊆ vt. (6.2)

Now the fact (6.1) and Lemma 21 imply existence of the required valuation v′ such that
vt/∀x ⊆ v′

t, ψ ∈ v′
f, and ∀G¬F∗, v′

t 6`
∨

v′
f. (♥ is consistent because Nextv′(U) ∈ v′

t.)
(2) Let U = α ∀U β. We define a formula γ by γ = α ∧

∧
¬H∗, and we will show

∀G¬F∗, (γ∧¬v∗) ∀U β, vt/∀x 6` ψ, (6.3)

which implies the existence of the required valuation v′ as (1). Note that the failure of
the witness condition means

β ∈ vf. (6.4)

Now assume that the claim (6.3) does not hold, then we have the following derivation.

∀G¬F∗, (γ∧¬v∗) ∀U β, vt/∀x ` ψ. (assumption)

∀X∀G¬F∗, ∀X
(
(γ∧¬v∗)∀U β

)
, ∀Xvt/∀x ` ∀Xψ.

∀G¬F∗, β ∨ ∀X
(
(γ∧¬v∗) ∀U β

)
` ¬v∗. (∵ (6.2), (6.4), and Lemma 3)

∀G¬F∗, γ ∀U β ` ¬v∗. (∵ Lemma 7)

This contradicts the consistency of 〈F ,H, U, v〉.
(3) As the proofs of (1) and (2), we show

∀G¬F∗, ∀G¬v∗, vt/∀x 6` ψ.

Assume otherwise, then we have the following derivation.

∀G¬F∗, ∀G¬v∗, vt/∀x ` ψ. (assumption)

∀X∀G¬F∗, ∀X∀G¬v∗, ∀Xvt/∀x ` ∀Xψ.

∀X∀G¬F∗, ∀X∀G¬v∗ ` ¬v∗. (∵ (6.2)) (†)
∀X∀G¬F∗ ` v∗ → ∃X∃Fv∗.

∀G¬F∗ ` ∀G(v∗ → ∃X∃Fv∗). (∵ Lemma 3)

∀G¬F∗ ` v∗ → ∃GFv∗. (∵ ∃GF-induction axiom)

∀G¬F∗ ` ¬v∗. (∵ Lemma 29)
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This contradicts the consistency of 〈F ,H, U, v〉.
(4) Let U = α ∀U β. As the above proofs, we show

∀G¬F∗, ∀G¬v∗, α ∀U β, vt/∀x 6` ψ.

Assume otherwise, then we have the following derivation.

∀G¬F∗, ∀G¬v∗, α ∀U β, vt/∀x ` ψ. (assumption)

∀X∀G¬F∗, ∀X∀G¬v∗, ∀X(α ∀U β), ∀Xvt/∀x ` ∀Xψ.

∀X∀G¬F∗, ∀X∀G¬v∗, α ∀U β, ∀Xvt/∀x ` β ∨ ∀Xψ. (∵ Lemma 6(4))

∀X∀G¬F∗, ∀X∀G¬v∗ ` ¬v∗. (∵ (6.2), (6.4) and Lemma 20(3))

Here we reach the step (†) of the proof of (3), and the remaining steps are exactly same
as (3). QED

Lemma 31 Let 〈F ,H, U, v〉 be a c-valuation in C(S0). If U = α ∃U β, then we have the
following.

(1) If 〈F ,H, U, v〉 does not satisfy the witness condition, then there is a valuation v′

such that v B v′, v′(α ∃U β) = t and the c-valuation ♦ is consistent.

(2) If 〈F ,H, U, v〉 satisfies neither the ∃GF-condition nor the witness condition, then
there is a valuation v′ such that v B v′, v′(α ∃U β) = t and the c-valuation ♣ is
consistent.

Proof (1) Put γ = α ∧
∧

¬H∗. Similarly to the proof of Lemma 30(2), we show

∀G¬F∗, (γ∧¬v∗) ∃U β, vt/∀x, α ∃U β 6` ⊥.

Assume otherwise, then we have the following derivation.

∀G¬F∗, (γ∧¬v∗) ∃U β, vt/∀x, α ∃U β ` ⊥. (assumption)

∀G¬F∗, vt/∀x, (γ∧¬v∗)∃U β ` ⊥. (∵ (γ∧¬v∗)∃U β ` α ∃U β, by Lemma 4(2))

∀X∀G¬F∗, ∀Xvt/∀x, ∃X
(
(γ∧¬v∗)∃U β

)
` ⊥.

∀G¬F∗, β ∨ ∃X
(
(γ∧¬v∗) ∃U β

)
` ¬v∗. (∵ ∀Xvt/∀x ⊆ vt, β ∈ vf, and Lemma 3)

∀G¬F∗, γ ∃U β ` ¬v∗. (∵ Lemma 7)

This contradicts the consistency of 〈F ,H, α ∃U β, v〉.
(2) Similarly to the proof of Lemma 30(4), we show

∀G¬F∗, ∀G¬v∗, α ∃U β, vt/∀x, α ∃U β 6` ⊥.

Assume otherwise, then we have the following derivation.

∀G¬F∗, ∀G¬v∗, vt/∀x, α ∃U β ` ⊥. (assumption)

∀X∀G¬F∗, ∀X∀G¬v∗, ∀Xvt/∀x, ∃X(α ∃U β) ` ⊥.

∀X∀G¬F∗, ∀X∀G¬v∗, ∀Xvt/∀x, α ∃U β ` β. (∵ Lemma 6(4))

∀X∀G¬F∗, ∀X∀G¬v∗ ` ¬v∗. (∵ ∀Xvt/∀x ⊆ vt, β ∈ vf, and Lemma 20(3))

Here we reach the step (†) of the proof of Lemma 30(3), and the remaining steps are
same. QED

17



7 Proof of completeness

As is mentioned in the previous section, our counter-model M0 for ϕ0 is 〈C(S0), Ã, V0〉
where C(S0) and Ã are already defined. Here we define the mapping V0 : C(S0) ×
PropVar → {t, f} as follows.

V0(〈F ,H, U, v〉, p) =

{
v(p) (p ∈ S0)

arbitrary (p 6∈ S0)

Lemma 32 (Main Lemma) The following hold for any formula ϕ in S0 and any c-
valuation 〈F ,H, U, v〉 in C(S0). (1) If v(ϕ) = t, then M0, 〈F ,H, U, v〉 |= ϕ. (2) If
v(ϕ) = f, then M0, 〈F ,H, U, v〉 6|= ϕ.

Proof By induction on ϕ using the Lemmas 33, 34, 37, 39, and 40 below. QED

Lemma 33 (Truth condition for >,¬,∧) Let 〈F ,H, U, v〉 be a c-valuation in C(S0),
and ¬ψ and ψ1 ∧ ψ2 be formulas in S0.

(1) v(>) = t.

(2) If v(¬ψ) = t, then v(ψ) = f.

(3) If v(¬ψ) = f, then v(ψ) = t.

(4) If v(ψ1 ∧ ψ2) = t, then v(ψ1) = v(ψ2) = t.

(5) If v(ψ1 ∧ ψ2) = f, then v(ψ1) = f or v(ψ2) = f.

Proof (1) If v(>) = f, then the c-valuation 〈F ,H, U, v〉 would be inconsistent because
of the fact ` > and the definition of the consistency (Prop. 17). Proofs of (2)–(5) are
similar using the facts (¬ψ, ψ ` ⊥), (` (¬ψ) ∨ ψ), (ψ1 ∧ ψ2 ` ψ1), (ψ1 ∧ ψ2 ` ψ2), and
(ψ1, ψ2 ` ψ1 ∧ ψ2). QED

Lemma 34 (Truth condition for ∀X) Let 〈F ,H, U, v〉 be a c-valuation in C(S0) and
∀Xψ be a formula in S0.

(1) If v(∀Xψ) = t, then v′(ψ) = t for any c-valuation 〈F ′,H′, U ′, v′〉 such that 〈F ,H, U, v〉 Ã
〈F ′,H′, U ′, v′〉.

(2) If v(∀Xψ) = f, then there is a c-valuation 〈F ′,H′, U ′, v′〉 such that 〈F ,H, U, v〉 Ã
〈F ′,H′, U ′, v′〉 and v′(ψ) = f.

Proof By the definition of Ã and Lemma 30 QED

Lemma 35 (Seriality) The relation Ã is serial; that is, for each c-valuation 〈F ,H, U, v〉
in C(S0), there is a c-valuation 〈F ′,H′, U ′, v′〉 such that 〈F ,H, U, v〉 Ã 〈F ′,H′, U ′, v′〉.
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Proof We have ∀X¬> ∈ S0 (Lemma 23) and v(∀X¬>) = f (∵ otherwise 〈F ,H, U, v〉 is
inconsistent by the axiom D). Then Lemma 34(2) implies the existence of 〈F ′,H′, U ′, v′〉.
QED

Lemma 36 Suppose 〈F ,H, U, v〉 ∈ C(S0) and α ∀U β ∈ S0. If v(α ∀U β) = f and v(α) =
t, then there is a c-valuation 〈F ′,H′, U ′, v′〉 such that 〈F ,H, U, v〉 Ã 〈F ′,H′, U ′, v′〉 and
v′(α ∀U β) = v′(β) = f.

Proof By the definition of consistency and Lemmas 6(1), 6(5), and 34(2) (for ψ =
α ∀U β). Note that ∀X(α ∀U β) ∈ S0 by Lemma 23. QED

Lemma 37 (Truth condition for ∀U) Let 〈F0,H0, U0, v0〉 be a c-valuation in C(S0)
and α ∀U β be a formula in S0.

(1) If v0(α ∀U β) = t, then for any infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in C(S0)
there is a number k ≥ 0 such that vk(β) = t and (∀i < k)(vi(α) = t).

(2) If v0(α ∀U β) = f, then there is an infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in
C(S0) that satisfies

(
(vk(β) = f) or (∃i < k)(vi(α) = f)

)
for any k ≥ 0.

Proof (1) Given 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉, Lemmas 6(3) and 6(4), the definitions of con-
sistency and B imply the fact:

(∀i)
((

vi(α ∀U β) = t and vi(β) = f
)

⇒(
vi(α) = t, vi(∀X(α ∀U β)) = t, and vi+1(α ∀U β) = t

))
.

(Note that ∀X(α ∀U β) ∈ S0 by Lemma 23.) We have v0(α ∀U β) = t by the premise,
then the above fact implies either (∀i)

(
vi(α ∀U β) = t and vi(β) = f

)
or (∃k)

(
vk(β) =

t and (∀i < k)(vi(α) = t)
)
. We show that the former is impossible; this completes

the proof of (1). Assume (∀i)
(
vi(α ∀U β) = t and vi(β) = f

)
, then Lemma 28(1) and the

definitions of “Next” and “Ã” imply that there exists a c-valuation 〈Fk,Hk, Uk, vk〉 whose
designated formula Uk is α ∀U β. Because this c-valuation fails in the witness condition
(∵ assumption), the next c-valuation 〈Fk+1,Hk+1, Uk+1, vk+1〉 must be ♦ or ♣, and Uk+1

is still α ∀U β. Iterating this argument, we have Uk+x = α ∀U β for all x; this contradicts
Lemma 28(1).

(2) We show how to define an infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 such that
each c-valuation 〈Fi,Hi, Ui, vi〉 satisfies at least one of the following conditions:

(I) vi(α ∀U β) = vi(β) = f.

(II) (∃j < i)(vj(α) = f).

The first c-valuation 〈F0,H0, U0, v0〉 satisfies the condition (I) because of v0(α ∀U β) = f

(premise), Lemma 6(1), and the definition of consistency. Suppose a sequence 〈F0,H0,
U0, v0〉 Ã · · · Ã 〈Fn,Hn, Un, vn〉 is already defined; then we define the next c-valuation
〈Fn+1,Hn+1, Un+1, vn+1〉 as follows: If vj(α) = f for some j ≤ n, then the next node is
an arbitrary c-valuation obtained by Lemma 35; otherwise, 〈Fn,Hn, Un, vn〉 satisfies the
conditions “vn(α) = t” and (I), and the next node is obtained by Lemma 36. QED
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Lemma 38 Let 〈F ,H, U, v〉 be a c-valuation in C(S0) and α ∃U β be a formula in S0.

(1) If v(α ∃U β) = t and v(β) = f, then there is a c-valuation 〈F ′,H′, U ′, v′〉 ∈ C(S0)
such that 〈F ,H, U, v〉 Ã 〈F ′,H′, U ′, v′〉 and v′(α ∃U β) = t.

(2) If the designated formula U is α ∃U β and v(β) = f, then there is a c-valuation
〈F ′,H′, α ∃U β, v′〉 ∈ C(S0) such that 〈F ,H, α ∃U β, v〉 Ã 〈F ′,H′, α ∃U β, v′〉 and
v′(α ∃U β) = t.

Proof (1) ∀X¬(α ∃U β) ∈ S0 by Lemma 23; then existence of the required c-valuation
is guaranteed by the definition of consistency and Lemmas 6(4), 33(3), and 34(2). Note
that ∃X(α ∃U β) = ¬∀X¬(α ∃U β). (2) By Lemma 31. QED

Lemma 39 (Truth condition for ∃U) Let 〈F0,H0, U0, v0〉 be a c-valuation in C(S0)
and α ∃U β be a formula in S0.

(1) If v0(α ∃U β) = t, then there is an infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in
C(S0) that satisfies vk(β) = t and (∀i < k)(vi(α) = t) for some k ≥ 0.

(2) If v0(α ∃U β) = f, then for any infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in C(S0)
and any k ≥ 0, we have vk(β) = f or (∃i < k)(vi(α) = f).

Proof (1) We define 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 consisting of three parts. The first part is
〈F0,H0, U0, v0〉 Ã 〈F1,H1, U1, v1〉 Ã · · · Ã 〈Fa,Ha, Ua, va〉 where (∀i < a)

(
Ui 6= α ∃U β,

vi(α ∃U β) = t, and vi(β) = f
)
, va(α ∃U β) = t and

(
Ua = α ∃U β or va(β) = t

)
.

This part is constructed from 〈F0,H0, U0, v0〉 by iterated applications of Lemma 38(1).
The existence of such a number a is guaranteed by Lemma 28(1) and the definition
of “Next”. The second part is 〈Fa,Ha, Ua, va〉 Ã 〈Fa+1,Ha+1, Ua+1, va+1〉 Ã · · · Ã
〈Fk,Hk, Uk, vk〉 where (a ≤ ∀i < k)

(
Ui = α ∃U β, vi(α ∃U β) = t, and vi(β) = f

)
and

vk(β) = t. This part is constructed from 〈Fa,Ha, Ua, va〉 by iterated applications of
Lemma 38(2). The existence of such a number k is guaranteed by Lemma 28(1). The
third part 〈Fk,Hk, Uk, vk〉 Ã 〈Fk+1,Hk+1, Uk+1, vk+1〉 Ã · · · is constructed by infinite
iteration of Lemma 35. The condition (∀i < k)(vi(α) = t) is guaranteed by the definition
of consistency, the fact (∀i < k)

(
vi(α ∃U β) = t and vi(β) = f

)
, and Lemma 6(3).

(2) Given 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉, Lemmas 6(1) and 6(5) and the definition of con-
sistency imply the fact:

(∀i)
(
vi(α ∃U β) = f ⇒

(
vi(β) = f and

(
vi(α) = f or vi(∀X¬(α ∃U β)) = t

)))
.

(Note that ∀X¬(α ∃U β) ∈ S0 by Lemma 23 and that ∃X(α ∃U β) = ¬∀X¬(α ∃U β).) We
have v0(α ∃U β) = f by the premise, hence the required condition (∀i)

(
vi(β) = f or (∃j <

i)(vi(α) = f)
)

holds by the above fact and “vi(∀X¬(α ∃U β)) = t ⇒ vi+1(α ∃U β) = f” (∵
the definition of B and Lemma 33(2)).

QED

Lemma 40 (Truth condition for ∃GF) Let 〈F0,H0, U0, v0〉 be a c-valuation in C(S0)
and ∃GFψ be a formula in S0.
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(1) If v0(∃GFψ) = t, then there is an infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in
C(S0) such that (∀i)(∃j ≥ i)(vj(ψ) = t).

(2) If v0(∃GFψ) = f, then for any infinite Ã-sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉 in C(S0)
there is a number i such that (∀j ≥ i)(vj(ψ) = f).

Proof (1) The formula ∃F(ψ ∧ ∃X∃GFψ), which is equal to >∃U(ψ ∧ ¬∀X¬∃GFψ), is in
S0 by Lemma 23. Hence the definition of consistency, the fact v0(∃GFψ) = t (premise),
and Lemma 8(3) imply v0(>∃U(ψ ∧ ¬∀X¬∃GFψ)) = t. We apply Lemma 39(1) and we
get a finite sequence 〈F0,H0, U0, v0〉 Ã · · · Ã 〈F ′,H′, U ′, v′〉 (the “first and second parts”
in the proof of Lemma 39(1)) such that v′(ψ ∧ ¬∀X¬∃GFψ) = t. Then Lemmas 33 and
34(2) imply that v′(ψ) = t and that there is a c-valuation 〈F ′′,H′′, U ′′, v′′〉 such that
〈F ′,H′, U ′, v′〉 Ã 〈F ′′,H′′, U ′′, v′′〉 and v′′(∃GFψ) = t. Iterating this argument, we gat the
required infinite sequence 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉.

(2) Given 〈〈Fi,Hi, Ui, vi〉(i=0,1,2...)〉, Lemmas 8(2) and 33 and the definitions of consis-
tency and B imply the fact:

(∀i)
(
vi(∃GFψ) = f ⇒

(
vi(¬∀X¬∃GFψ) = f and vi+1(∃GFψ) = f

))
(Note that ∃X∃GFψ is equal to ¬∀X¬∃GFψ and is in S0 by Lemma 23.) This implies
(∀i)(vi(∃GFψ) = f) because of the premise v0(∃GFψ) = f. Then the existence of the
required number i is guaranteed by Lemma 28(2). QED

Finally the main result of this paper is proved:

Theorem 41 (Completeness of HECTL) M0 is a finite model, and M0, x 6|= ϕ0 for
some state x. (ϕ0 is a formula, fixed at the beginning of Section 6, such that 6` ϕ0, and
M0 was defined at the beginning of this section.)

Proof Lemma 21 shows that there is a valuation v of S0 such that vt 6`
∨

vf and v(ϕ0) =
f. Then put x = 〈∅, ∅,>∀U>, v〉; x is consistent by the definition of consistency and
Lemmas 6(2) and 23(1), and we have M0, x 6|= ϕ0 by the Main Lemma 32(2). Finiteness
and seriality of M0 is guaranteed by Lemmas 19 and 35. QED
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