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INTUITIONISTIC FRAGMENT OF THE λµ-CALCULUS

NAOSUKE MATSUDA

Abstract. Parigot [8] gave an elegant proof system “the λµ-calculus” for
classical logic, and gave a correspondence between classical logic and some
kind of program structures which the λ-calculus cannot capture. Although the

correspondence is due to the power of inference rules of the λµ-calculus, some
of those rules are admissible in some intuitionistic proof systems. It therefore
must be natural to ask whether it is possible to extend the correspondence
between intuitionistic logic and program structures. In this paper, we give an

answer to this question by giving a natural subsystem of the λµ-calculus which
corresponds to intuitionistic logic and investigating it.

1. Introduction

It is well-known that Gentzen’s proof system NJ of intuitionistic logic has a close
connection called “Curry-Howard correspondence” with the λ-calculus 1 (see [10]).
Because λ-terms can be viewed as a kind of programs (see [9]), this correspondence
is also viewed as a correspondence between NJ and programs. An extension of
this correspondence was given by Griffin [2]. He discovered that the double nega-
tion elimination law corresponds to some kind of program structures which the
λ-calculus cannot capture. His idea was refined by Parigot [8]. Parigot introduced
a natural deduction style proof system called “the λµ-calculus” for classical logic
and gave a proofs-as-programs correspondence specifically. His system has more
expressive power than the λ-calculus actually. In [10], for example, the λµ-terms
“catch a in M” and “throw N to a” satisfying the following property are given
(see [10] in detail).

catch a in C[throw N to a]

is reduced to N by Parigot’s reduction ▷c .

With these terms, the λµ-calculus can capture the catch-throw program.
Then, why can the λµ-calculus capture more various program structures? It is

an answer from proof theoretic aspect that the λµ-calculus admits more various
unnatural derivations than the λ-calculus (NJ). Because a calculation process is
given by derivation reductions from an unnatural derivation into a natural deriva-
tion, flexible 2 proof systems can capture more various program structures. For
example, the behaviour of the term catch a in C[throw N to a] written above is

1In this paper, “the λ-calculus” means the system which consists of: (1) The set of all λ-terms,
(2) Its (simply) typing system, and (3) β-reduction.

2Here, ”the system L is flexible” means ”L admits various unnatural derivations”. This prop-

erty may be a disadvantage if we view this system as a proof system. However, it becomes a great
advantage if we view this system as a calculation model.

1



2 N. MATSUDA

due to the following derivation reductions.

¬α ⊢ ¬α

....
Γ ⊢ ∆, α

¬α,Γ ⊢ ∆,⊥
¬α,Γ ⊢ ∆, β → γ

.... ▷

Π ⊢ Θ, β

¬α,Γ,Π ⊢ ∆,Θ, γ....

¬α ⊢ ¬α

....
Γ ⊢ ∆, α

¬α,Γ ⊢ ∆,⊥
¬α,Γ ⊢ ∆, γ....

¬α ⊢ ¬α

....
Γ ⊢ ∆, α

¬α,Γ ⊢ ∆,⊥ ▷

Γ ⊢ ∆, α....

....
Γ ⊢ ∆, α....

We cannot construct these derivations in NJ actually.
On the other hand, there also exist proof systems for intuitionistic logic which

admit the above derivations and derivation reductions. For example, the system
LJ′ 3 has LK-like inference rules and admits the above figures. Therefore it must
be natural to ask whether it is possible to extend the correspondence between
intuitionistic logic and program structures. Then two questions arise:

(♯1) Is there a natural subset of the set Λµ of all λµ-terms, which corresponds
to intuitionistic logic and can capture more program structures than the
λ-calculus?

(♯2) If such subsystem exists, what kind of program structures can it capture
(or what kind of program structures can’t it capture)?

In section 2, we give an answer to the former question by giving an intuitionistic
fragments ΛInt

µ of Λµ which has many good properties such as:

• ΛInt
µ is closed under Parigot’s reduction.

• ΛInt
µ can capture some program structures which λ-terms cannot capture. In

particular, the terms catch a in M and throw N to a are both included
in this subset in some sense.

In the remainder of this section, we describe some basic concepts we are going
to use.

1.1. Preliminary: The λµ-calculus. Suppose that a countable set P of atomic
types (propositional variables) is given. Then the set Fml of all types (or formulas)
based on P and the set Fml→ of all function types (implicational formulas) based
on P are defined by the following grammar.

α, β ∈ Fml ::= p | ⊥ | (α→ β)

α, β ∈ Fml→ ::= p | (α→ β)

p ∈ P

3LJ′ is an intuitionistic proof system obtained by restricting Gentzen’s LK as follows: the

right-implication rule is allowed only when the principal formulas are the only formulas in the
succedents of the lower sequents. See [11, p. 52] in detail.
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Parentheses are omitted in such a way that α→ β → γ denotes (α→ (β → γ)).
We use metavariables φ,ψ, α, β, . . . to stand for arbitrary types, and p, q, r, . . .

for arbitrary atomic types. We write α ≡ β if α is syntactically equal to β.

Suppose that a countable set Vλ of λ-variables and a countable set Vµ of µ-
variables are given. Then, the set Λ of all λ-terms based on Vλ and the set Λµ of
all λµ-terms based on Vλ ∪Vµ are defined by the following grammar.

M,N ∈ Λ ::= x | (MN) | (λx.M)

M,N ∈ Λµ ::= x | (MN) | (λx.M) | (aM) | (µa.M)

x ∈ Vλ, a ∈ Vµ

Parentheses are omitted in such a way that MNPQ denotes (((MN)P )Q) and
λx.MN denotes (λx.(MN)). We use the abbreviation such as

λx1 . . . xn.M ≡ (λx1.(λx2.(. . . (λxn.M) . . . ))).

We use metavariables M,N,P,Q, . . . to stand for arbitrary terms, x, y, z, . . . for
arbitrary λ-variables, and a, b, c, . . . for arbitrary µ-variables. We also use notations
such as [N/x]M (the substitution of N for free occurrences of x in M), Vλ(µ)(M)
(the set of all λ(µ)-variables in M), FVλ(µ)(M) (the set of all free λ(µ)-variables
in M), BVλ(µ)(M) (the set of all bound λ(µ)-variables in M), Sub(M) (the set of
all subterms of M), M ≡ N (M is syntactically equal to N).

A typing judgement is an expression of the form Γ ⊢M : α, ∆ where:

• Γ is a set of pairs of λ-variables and types written x : β.
• M is a λµ-term.
• α is a type.
• ∆ is a set of pairs of µ-variables and types written a : γ.

We also assume the following properties.

• If x : α ∈ Γ and α ̸≡ β, then x : β ̸∈ Γ.
• If a : α ∈ ∆ and α ̸≡ β, then a : β ̸∈ ∆.

We use abbreviations such as Γ,∆ = Γ ∪ ∆ and x : α = {x : α}. We also write
⊢M : α, ∆ ≡ ∅ ⊢M : α, ∆ and Γ ⊢M : α ≡ Γ ⊢M : α, ∅.

Definition 1.1. (TAλµ [8, Subsection 3.3 (Typed λµ-calculus)]) The typing system
TAλµ for Λµ consists of the following rules.
[axiom] (Var) x : α ⊢ x : α
[Inference rule]

Γ1 ⊢M : α→ β, ∆1 Γ2 ⊢ N : α, ∆2

Γ1,Γ2 ⊢MN : β, ∆1,∆2
(App)

Γ ⊢M : β, ∆

Γ \ {x : α} ⊢ λx.M : α→ β, ∆
(Abs)

Γ ⊢M : α, ∆

Γ ⊢ aM : ⊥, ∆ ∪ {a : α}
(App-µ)

Γ ⊢M : ⊥, ∆
Γ ⊢ µa.M : α, ∆ \ {a : α}

(Abs-µ)

Furthermore, the typing systemTAλ for Λ is defined by the rules (Var), (App), (Abs).



4 N. MATSUDA

Remark 1.2. This formulation is a little different from Parigot’s original one ([8]).
However this formulation has the following nice property.

x1 : α1, . . . , xn : αn ⊢M : φ, a1 : β1, . . . , am : βm is provable in TAλµ

=⇒ FVλ(M) = {x1, . . . , xn} and FVµ(M) = {a1, . . . , am}.

1.2. Preliminary: Tree sequent calculus. There are many proof systems for
intuitionistic logic which are more flexible thanNJ. Kashima’s tree sequent calculus
TLJ [4] is one of the most flexible proof systems. We are going to extract a natural
subset of Λµ by use of this system.

Let N<ω be the set of all finite sequences of natural numbers and ∗ be the concate-
nation function on N<ω, that is, ⟨n1, . . . , nk⟩∗⟨m1, . . . ,ml⟩ = ⟨n1, . . . , nk,m1, . . . ,ml⟩.
We write the empty sequence as ϵ. We use the abbreviation such as ⟨n⟩ = n if it
causes no confusion. We define a partial order ⪯ on N<ω as follows.

n ⪯ m ⇔ ∃k ∈ N<ω such that m = n ∗ k

We write n ≺ m if both n ⪯ m and n ̸= m hold, and write n ≺1 m if there exists
a natural number k such that m = n ∗ k. A tree T is a finite subset of N<ω which
satisfies:

• ϵ ∈ T .
• n ∈ T , m ⪯ n =⇒ m ∈ T .

We say n is a node of T if n ∈ T . We also say n is a parent-node of m (or m is a
child-node of n) if n ≺1 m, and say n is an ancestor of m (or m is a descendant of
n) if n ≺ m.

Definition 1.3 (TLJ).

(1) A tree sequent is an expression of the form Γ ⊢T ∆ where:
• T is a tree.
• Γ and ∆ are sets of pairs of nodes of T and formulas written n : α.

We abbreviate ∅ ⊢T ∆ to ⊢T ∆.
A tree sequent is viewed as a tree in which each node is labelled with a

sequent. For example, the tree sequent

ϵ : α1, ϵ : α2, ⟨1⟩ : β1, ⟨2⟩ : γ1, ⟨2, 1⟩ : δ1, ⟨2, 1⟩ : δ2
⊢T ϵ : α3, ⟨1⟩ : β2, ⟨2⟩ : γ2, ⟨2⟩ : γ3, ⟨2⟩ : γ4, ⟨2, 2⟩ : ε1, ⟨2, 2⟩ : ε2

(T = {ϵ, ⟨1⟩, ⟨1, 1⟩, ⟨2⟩, ⟨2, 1⟩, ⟨2, 2⟩})
can be viewed as the tree in figure 1.

(2) The tree sequent calculusTLJ is a proof system which derives tree sequents,
and consists of the following rules.
[axiom] (Id) n : α ⊢T n : α (⊥) n : ⊥ ⊢T n : α
[inference rule]

Γ1 ⊢T Γ2

∆1,Γ1 ⊢T Γ2,∆2

(Weakening)

Γ1 ⊢T ∆1, n : α n : α, Γ2 ⊢T ∆2

Γ1,Γ2 ⊢T ∆1,∆2

(Cut)
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ϵ : α1, α2 ⊢ α3

⟨1⟩ : β1 ⊢ β2

⟨1, 1⟩ : ⊢

⟨2⟩ : γ1 ⊢ γ2, γ3, γ4

⟨2, 1⟩ : δ1, δ2 ⊢ ⟨2, 2⟩ : ⊢ ε1, ε2

Figure 1

ϵ : α ⊢

⟨1⟩ : β ⊢ γ ⟨2⟩ : ⊢ δ, ε
⇝

ϵ : α ⊢ β → γ

⟨2⟩ : ⊢ δ, ε

Figure 2. (⊢→)

n ∗ k : α, Γ ⊢T ∆

n : α, Γ ⊢T ∆
(h ⊢)

Γ ⊢T ∆, n : α

Γ ⊢T ∆, n ∗ k : α
(⊢ h)

Γ ⊢T ∆

Γ ⊢T ∪{n} ∆
(Grow)

(T ∪ {n} is also a tree)

Γ1 ⊢T ∆1, n : α n : β, Γ2 ⊢T ∆2

n : α→ β, Γ1,Γ2 ⊢T ∆1,∆2

(→⊢)

n ∗ k : α, Γ ⊢T ∆, n ∗ k : β

Γ ⊢T \{n∗k} ∆, n : α→ β
(⊢→)

In the last figure, because Γ ⊢T \{n∗k} ∆, n : α → β is also a tree sequent,
the node n ∗ k and its descendants do not occur in the lower sequent (see
also figure 2). We say n ∗ k is the eigen-node of this (⊢→)-rule.

We write ⊢TLJ φ (φ is provable in TLJ) if ⊢TLJ ⊢{ϵ} ϵ : φ.

Theorem 1.4 ([3, 4, 6]). φ is provable in TLJ if and only if φ is intuitionistically
valid.

TLJ can be reformed into a natural deduction like proof system as follows.

Definition 1.5 (TNJ). The systemTNJ consists of the rules (Id), (Weakening), (h ⊢
), (⊢ h), (Grow), (⊢→) and the following rules.

Γ ⊢T ∆, n : ⊥
Γ ⊢T ∆, n : α

(Absurd)
Γ1 ⊢T ∆1, n : α→ β Γ2 ⊢T ∆2, n : α

Γ1,Γ2 ⊢T ∆1,∆2, n : β
(MP)

Then the following theorem can be proved easily.

Theorem 1.6. ([6, Theorem 6.2.]) The following conditions are all equivalent.
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ϵ : Γ0 ⊢ ∆0

⟨1⟩ : Γ1 ⊢ ∆1 ⟨2⟩ : ∅ ⊢ ∅

⟨2, 1⟩ : ∅ ⊢ ∅ ⟨2, 2⟩ : α ⊢ β

⇝
ϵ : Γ0 ⊢ ∆0, α→ β

⟨1⟩ : Γ1 ⊢ ∆1

Figure 3. (⊢→)∗

(1) φ is provable in TLJ.
(2) φ is provable in TNJ.
(3) φ is intuitionistically valid.

Lemma 1.7. The following rule is admissible in TLJ (see also figure 3).

n ∗ i ∗m : α, Γ ⊢T ∆, n ∗ i ∗m : β

Γ ⊢T \{k | k⪰n∗i} ∆, n : α→ β
(⊢→)∗

(n ∗ i and its descendants do not occur in Γ ∪∆)

Proof. As an example, we give a proof figure which makes up the figure written in
figure 3 (and we can make up the other cases similarly).

⟨2, 2⟩ : α, Γ0,Γ1 ⊢T3 ∆0,∆1, ⟨2, 2⟩ : β
Γ0,Γ1 ⊢T2 ∆0,∆1, ⟨2⟩ : α→ β

(⊢→)

⟨2, 1⟩ : α, Γ0,Γ1 ⊢T2 ∆0,∆1, ⟨2⟩ : α→ β, ⟨2, 1⟩ : β
(Weakening)

Γ0,Γ1 ⊢T1 ∆0,∆1, ⟨2⟩ : α→ β
(⊢→)

⟨2⟩ : ⊤, Γ0,Γ1 ⊢T1 ∆0,∆1, ⟨2⟩ : α→ β
(Weakening)

Γ0,Γ1 ⊢T0 ∆0,∆1, ϵ : ⊤ → α→ β
(⊢→)

⟨2⟩ : p ⊢T1 ⟨2⟩ : p
⊢T0 ϵ : ⊤

(⊢→)

Γ0,Γ1 ⊢T0 ∆0,∆1, ϵ : α→ β
(MP)

Here,

⊤ ≡ p→ p, T0 = {ϵ, ⟨1⟩}, T1 = {ϵ, ⟨1⟩, ⟨2⟩},
T2 = {ϵ, ⟨1⟩, ⟨2⟩, ⟨2, 1⟩}, T3 = {ϵ, ⟨1⟩, ⟨2⟩, ⟨2, 1⟩, ⟨2, 2⟩}.

□

2. Intuitionistic fragment of the λµ-calculus

TAλµ and TNJ are very similar systems. We do not mind saying that the sole
difference between them is the label condition of (⊢→)-rule:

n ∗ k : α, Γ ⊢T ∆, n ∗ k : β

Γ ⊢T \{n∗k} ∆, n : α→ β
(⊢→)

(
:::::
n ∗ k

::::
and

::
its

:::::::::::
descendant

::
do

::::
not

:::::
occur

:::
in

:::
the

:::::
lower

::::::::
sequent)
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With this observation, we obtain the following subset ΛInt
µ of Λµ, which corresponds

to intuitionistic logic.

Definition 2.1. (1) We say x ∈ FVλ(M) occurs classically in M if there exist
a ∈ FVµ(M) and aN ∈ Sub(M) such that x ∈ FVλ(N). We say x occurs intu-
itionistically in M if x does not occurs classically in M 4 . We define VInt

λ (M) as
the set {x | x occurs intuitionistically in M}.

(2) ΛInt
µ is defined as follows.

(ΛInt
µ 0) Vλ ⊆ ΛInt

µ

(ΛInt
µ 1) M,N ∈ ΛInt

µ =⇒ MN ∈ ΛInt
µ

(ΛInt
µ 2) M ∈ ΛInt

µ , x ∈ VInt
λ (M) =⇒ λx.M ∈ ΛInt

µ

(ΛInt
µ 3) M ∈ ΛInt

µ , a ∈ Vµ =⇒ aM ∈ ΛInt
µ

(ΛInt
µ 4) M ∈ ΛInt

µ , a ∈ Vµ =⇒ µa.M ∈ ΛInt
µ

We call a term in ΛInt
µ a λµInt-term.

Intuitively speaking, a closed λµ-term M is in ΛInt
µ if M does not have subterms

of the form µa.(. . . λx.(. . . a(. . . x . . . ))).

Example 2.2.

(1) λx.ρa.(ax)(by) ∈ ΛInt
µ .

(2) λx.µa.a(x(λy.µb.ay)), whose principal type is ((α→ β) → α) → α (Peirce’s
law), is not in ΛInt

µ because y occurs classically in µb.ay.

Theorem 2.3 (Main theorem). Typed λµInt-terms correspond to [→,⊥]-fragment
of intuitionistic logic, that is:

(1) If φ ∈ Fml is intuitionistically valid, then there is a closed λµInt-term Mφ

such that ⊢Mφ : φ is provable in TAλµ.
(2) Let M be a closed λµInt-term. If ⊢ M : φ is provable in TAλµ, then φ is

intuitionistically valid.

Proof of theorem 2.3 - (1). The set

{α | there is a closed λµInt-term M such that ⊢M : α is provable in TAλµ}
is closed under modus ponens. In addition, we can see that ⊢ λxy.x : α → β → α,
⊢ λxyz.xz(yz) : (α → β → γ) → (α → β) → α → γ and ⊢ λx.µa.ax : ⊥ → α are
all provable in TAλµ. □

To show theorem 2.3-(2), we prepare some notions.

Definition 2.4. Let M be a closed λµInt-term following the Barendregt’s conven-
tion 5. It is well-known that BVλ(M) ∪ {ϵ} can also be viewed as a tree-structure
by giving the following partial order ≺M (see also figure 4).

• x ≺M y if λy occurs in the scope of λx.
• ϵ ≺M x.

4Note that we say x occurs intuitionistically in M even if x does not occur in M .
5M follows the Barendregt’s convention if all bound variables in M are all different from each

other.
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ϵ λx •

µa •

a

λw w

λy µb •

µc •

b

λz y

x

T M : ϵ ⟨1⟩
x

⟨1, 1⟩
w

⟨1, 2⟩
y

⟨1, 2, 1⟩
z

Figure 4. λx.(µa.a(λw.w))(λy.µb.(µc.b(λz.y))x)

ϵ

· · ·

· · ·

λx

· · ·

· · ·

λy

· · ·
•

· · ·
x

· · ·
y

· · ·

Figure 5

We write this tree as T M . ≺M is simply written as ≺ if it causes no confusion.
The node which corresponds to x is simply written as x.

Lemma 2.5. Let M be a closed λµInt-term following the Barendregt’s convention.
Then the following properties hold in T M .

(1) For each subterm N of M , ≺ is a total order on FVλ(N).
(2) If x ∈ FVλ(N), y ∈ BVλ(N) for some subterm N of M , then x ≺ y.
(3) Let FVa

λ(N) = {x ∈ FVλ(N) | ∃aP ∈ Sub(N) such that x occurs in P}.
Then ≺ is a total order on FVa

λ(N).

Proof. First, we note that ”x ≺ y” means ”λx occurs in the path from the root-
node ϵ to λy when we view M as a tree” (see figure 5). Then the lemma is obvious
because M is a closed term and follows the Barendregt’s convention. □
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Definition 2.6. For each N ∈ Sub(M) and a ∈ FVµ(N), we assign the node [N ]
of T M and assign the node [a]N as follows (see also figure 6).

[N ] = the greatest 6element of FVλ(N) ∪ {ϵ}.
[a]N = the greatest element of FVa

λ(N) ∪ {ϵ}.

From lemma 2.5, we can assign such node, for each N ∈ Sub(M) and a ∈ FVµ(N).

Then we return to the proof of the main theorem.

Proof of theorem 2.3 - (2). LetM be a closed λµInt-term such that there is aTAλµ-
derivation Σ of ⊢ M : φ. We can assume that M follows the Barendregt’s conven-
tion. For each N ∈ Sub(M), we define the subtree TM (N) of T M as

TM (N) = ⟨{x | ∃y ∈ FVλ(N) such that x ⪯M y},≺M ⟩

(see also figure 6). Then we can show, by induction on the size of derivation, the
following statement.

Γ ⊢ N : ψ, ∆ occurs in Σ

=⇒ [Γ] ⊢TM (N) [N ] : ψ, [∆]N is provable in TNJ

Here,

[Γ] = {[x] : α | x : α ∈ Γ} , [∆]N = {[a]N : α | a : α ∈ ∆}.
(1) Suppose Γ ⊢ N : ψ, ∆ is an axiom, that is,

Γ = {x : ψ}, N ≡ x, ∆ = ∅

for some x. Then we obtain [x] : ψ ⊢TM (x) [x] : ψ by (Id).
(2) Suppose Γ ⊢ N : ψ, ∆ is derived by (App).

....
Γ1 ⊢ P : α→ ψ, ∆1

....
Γ2 ⊢ Q : α, ∆2

Γ1,Γ2 ⊢ ∆1,∆2, PQ : ψ
(App)

(Γ = Γ1 ∪ Γ2, N ≡ PQ, ∆ = ∆1 ∪∆2)

By induction hypothesis,

[Γ1] ⊢TM (P ) [P ] : α→ ψ, [∆1]
P

and

[Γ2] ⊢TM (Q) [Q] : α, [∆2]
Q

are both provable in TNJ. From lemma 2.5 and the definition of [·], we
obtain:

• TM (P ), TM (Q) ⊆ TM (PQ).
• [P ], [Q] ⪯ [PQ].
• a ∈ FVµ(PQ) =⇒ [a]P , [a]Q ⪯ [a]PQ.

6In the following argument, the sentence “the greatest element of A” means “the greatest
element of A with respect to ≺M”.
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Then we can construct the following derivation.

....

[Γ1] ⊢TM (P ) [P ] : α→ ψ, [∆1]
P

[Γ1] ⊢TM (PQ) [P ] : α→ ψ, [∆1]
P

(Grow)

[Γ1] ⊢TM (PQ) [PQ] : α→ ψ, [∆1]
PQ

(⊢ h)

....

[Γ2] ⊢TM (Q) [Q] : α, [∆2]
Q

[Γ2] ⊢TM (PQ) [Q] : α, [∆2]
Q

(Grow)

[Γ2] ⊢TM (PQ) [PQ] : α, [∆2]
PQ

(⊢ h)

[Γ1,Γ2] ⊢TM (PQ) [PQ] : ψ, [∆1,∆2]
PQ

(MP)

(3) Suppose Γ ⊢ N : ψ, ∆ is derived by (Abs).

....
Γ′ ⊢ P : β, ∆

Γ′ \ {x : α} ⊢ λx.P : α→ β, ∆
(Abs)

(Γ = Γ′ \ {x : α}, N ≡ λx.P, ψ ≡ α→ β)

By induction hypothesis, [Γ′] ⊢TM (P ) [P ] : β, [∆]P is provable in TNJ.
From lemma 2.5 and the definition of [·], we obtain:

• TM (λx.P ) ⊂ TM (P ).
• [x] = [P ].
• [∆]λx.P = [∆]P .
• y ∈ FVλ(λx.P ) =⇒ [y] ⪯ [λx.P ] ≺ [x].
• a ∈ FVµ(P ) =⇒ [a]P = [a]λx.P ⪯ [λx.P ] ≺ [x].

Then we can obtain the following derivation.

....
[Γ′] ⊢TM (P ) [P ] : β, [∆]λx.P

[x] : α, [Γ′ \ {x : α}] ⊢TM (P ) [P ] : β, [∆]λx.P
(Weakening)

[Γ′ \ {x : α}] ⊢TM (λx.P ) [λx.P ] : α→ β, [∆]λx.P
(⊢→)∗

(4) Suppose Γ ⊢ N : ψ, ∆ is derived by (App-µ).

....
Γ ⊢ P : α, ∆′

Γ ⊢ aP : ⊥, ∆′ ∪ {a : α}
(App-µ)

(N ≡ aP, ψ ≡ ⊥, ∆ = ∆′ ∪ {a : α})

By induction hypothesis, [Γ] ⊢TM (P ) [P ] : α, [∆′]P is provable in TNJ.
From lemma 2.5 and the definition of [·], we obtain:

• TM (aP ) = TM (P ).
• [a]P ⪯ [a]aP = [aP ] = [P ].
• a ̸≡ b ∈ FVµ(P ) =⇒ [b]P = [b]aP
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Figure 6. λx.(µa.a(λw.w))(λy.µb.(µc.b(λz.y))x).

Then we can construct the following derivation.
....

[Γ] ⊢TM (aP ) [P ] : α, [∆′]P

[Γ] ⊢TM (aP ) [P ] : α, [a]P : α, [∆′ \ {a : α}]aP
(Weakening)

[Γ] ⊢TM (aP ) [∆′ ∪ {a : α}]aP
(⊢ h)

[Γ] ⊢TM (aP ) [aP ] : ⊥, [∆′ ∪ {a : α}]aP
(Weakening)

(5) Suppose Γ ⊢ N : ψ, ∆ is derived by (Abs-µ).
....

Γ ⊢ P : ⊥, ∆′

Γ ⊢ µa.P : ψ, ∆′ \ {a : ψ}
(Abs-µ)

(N ≡ µa.P, ∆ = ∆′ \ {a : ψ})
By induction hypothesis, [Γ] ⊢TM (P ) [P ] : ⊥, [∆′]P is provable in TNJ.
From lemma 2.5 and the definition of [·], we obtain:

• TM (P ) = TM (µa.P ).
• [a]P ⪯ [P ] = [µa.P ].
• b ∈ FVµ(µa.P ) =⇒ [b]µa.P = [b]P .

Then we can construct the following derivation.
....

[Γ] ⊢TM (µa.P ) [µa.P ] : ⊥, ∆′P

[Γ] ⊢TM (µa.P ) [µa.P ] : ⊥, [a]P : ⊥, [∆′ \ {a : ⊥}]µa.P
(Weakening)

[Γ] ⊢TM (µa.P ) [µa.P ] : ⊥, [∆′ \ {a : ⊥}]µa.P
(⊢ h)

[Γ] ⊢TM (µa.P ) [µa.P ] : ψ, [∆′ \ {a : ⊥}]µa.P
(Absurd)

□

In addition, we can obtain the following properties (see [1] in detail).
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Proposition 2.7. ΛInt
µ is closed under Parigot’s reduction ▷c defined in [8], that

is:

M ∈ ΛInt
µ , M ▷c N =⇒ N ∈ ΛInt

µ .

Proposition 2.8. The λµ-terms

catch a in M ≡ µa.aM,

throw M to a ≡ µb.aM

are both in ΛInt
µ , if M ∈ ΛInt

µ .

3. On the λρ-calculus

In [5], Komori gave a natural deduction style proof system called the λρ-calculus
for implicational fragment of classical logic (when we treat the λρ-calculus, we treat
only implicational formulas). This system give us a more simple logic system than
the λµ-calculus.

Definition 3.1. Suppose that a countable set Vλ of λ-variables, and a countable
set Vρ of ρ-variables are given. Then,the set Λρ of all λρ-terms based on Vλ ∪ Vµ

is defined by the following grammar.

M,N ∈ Λρ ::= x | (MN) | (λx.M) | (aM) | (ρa.M)

x ∈ Vλ, a ∈ Vρ

Definition 3.2. (TAλρ [5, Definition 2.2 (Typed λρ-terms)]) The typing system
TAλρ of Λρ consists of the following rules.
[axiom] (Var) x : α ⊢ x : α
[Inference rule]

Γ1 ⊢M : α→ β, ∆1 Γ2 ⊢ N : α, ∆2

Γ1,Γ2 ⊢MN : β, ∆1,∆2
(App)

Γ ⊢M : β, ∆

Γ \ {x : α} ⊢ λx.M : α→ β, ∆
(Abs)

Γ ⊢M : α, ∆

Γ ⊢ aM : β, ∆ ∪ {a : α}
(App-ρ)

Γ ⊢M : α, ∆

Γ ⊢ ρa.M : α, ∆ \ {a : α}
(Abs-ρ)

Theorem 3.3 ([5]). For each φ ∈ Fml→, φ is a tautology if and only if there is a
closed λρ-term M such that ⊢M : φ is derivable in TAλρ.

We can also construct an intuitionistic fragment of the λρ-calculus in the same
way as the previous section.
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Definition 3.4. The set ΛInt
ρ is defined as follows.

(ΛInt
ρ 0) Vλ ⊆ ΛInt

ρ

(ΛInt
ρ 1) M,N ∈ ΛInt

ρ =⇒ MN ∈ ΛInt
ρ

(ΛInt
ρ 2) M ∈ ΛInt

ρ , x ∈ VInt
λ (M) =⇒ λx.M ∈ ΛInt

ρ

(ΛInt
ρ 3) M ∈ ΛInt

ρ , a ∈ Vρ =⇒ aM ∈ ΛInt
ρ

(ΛInt
ρ 4) M ∈ ΛInt

ρ , a ∈ Vρ =⇒ ρa.M ∈ ΛInt
ρ

We call a term in ΛInt
ρ a λρInt-term.

Theorem 3.5. Typed λρInt-terms correspond to implicational fragment of intu-
itionistic logic, that is:

(1) If φ ∈ Fml→ is intuitionistically valid, then there is a closed λρInt-termMφ

such that ⊢Mφ : φ is provable in TAλρ.
(2) Let M be a closed λρInt-term. If ⊢ M : φ is provable in TAλρ, then φ is

intuitionistically valid.

Proof. (1) Obvious.
(2) In the same way as the proof of theorem 2.3. We prove only the case when

Γ ⊢ N : ψ, ∆ is derived by (Abs-ρ).
....

Γ ⊢ P : ψ, ∆′

Γ ⊢ ρa.P : ψ, ∆′ \ {a : ψ}
(Abs-ρ)

(N ≡ ρa.P, ∆ = ∆′ \ {a : ψ})
By induction hypothesis, [Γ] ⊢TM (P ) [P ] : ψ, [∆]P is provable in TNJ. From
lemma 2.5 and the definition of [ ], we obtain:

• TM (P ) = TM (ρa.P ).
• [a]P ⪯ [P ] = [ρa.P ].
• b ∈ FVρ(ρa.P ) =⇒ [b]ρa.P = [b]P .

Then we can construct the following derivation.
....

[Γ] ⊢TM (ρa.P ) [ρa.P ] : ψ, [∆]P

[Γ] ⊢TM (ρa.P ) [ρa.P ] : ψ, [a]P : ψ, [∆ \ {a : ψ}]ρa.P
(Weakening)

[Γ] ⊢TM (ρa.P ) [ρa.P ] : ψ, [∆ \ {a : ψ}]ρa.P
(⊢ h)

□

4. Conclusion and future work

(A) In this paper, we introduced an intuitionistic fragment of λµ-calculus. We
think this system has sufficient strength. In fact, we can construct λµ-terms
catch a in M and throw M to a in ΛInt

µ , if M ∈ ΛInt
µ .

However, the question (♯2) has not been solved yet. An answer is going to be
given in [1]. Furthermore, in this paper, we do not touch on the reductions of
λµ-calculus (or λρ-calculus). We are also going to touch on this topic in [1].
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(B) There, of course, exist other subsystems of the λµ-calculus which correspond
to intuitionistic logic. For example, we can easily construct more simple one as
follows.

Definition 4.1. The subset ΛInt−
µ of Λµ is defined as follows.

(ΛInt−
µ 0) Vλ ⊆ ΛInt−

µ

(ΛInt−
µ 1) M,N ∈ ΛInt−

µ =⇒ MN ∈ ΛInt−
µ

(ΛInt−
µ 2) M ∈ ΛInt−

µ , BVµ(M) = ∅ =⇒ λx.M ∈ ΛInt−
µ

(ΛInt−
µ 3) M ∈ ΛInt−

µ =⇒ aM ∈ ΛInt−
µ

(ΛInt−
µ 4) M ∈ ΛInt−

µ =⇒ µa.M ∈ ΛInt−
µ

Theorem 4.2. Typed λµInt−-terms correspond to implicational fragment of intu-
itionistic logic, that is:

(1) If φ ∈ Fml is intuitionistically valid, then there is a closed λµInt−-term Mφ

such that ⊢Mφ : φ is provable in TAλµ.
(2) Let M be a closed λµInt−-term. If ⊢M : φ is provable in TAλµ, then φ is

intuitionistically valid.

Proof. (2) We can easily see that

x1 : α1, . . . , xn : αn ⊢M : φ, a1 : β1, . . . , am : βm is provable in TAλµ

=⇒ α1, . . . , αn ⊢ φ, β1, . . . , βm is provable in LJ′.

□

Although this system is simpler that the λµInt-calculus, the λµInt-calculus is
more flexible than this system. Therefore the λµInt-calculus can capture more
various program structures than the λµInt−-calculus. It therefore must be natural
to ask whether there is a natural proof system which is more flexible than λµInt-
calculus (or λµ-calculus).

(♯1)′ Is there a proof system for intuitionistic logic, which system has more flex-
ible inference rules than the λµInt-calculus and can capture more program
structures?

(♯2)′ If it exists, what kind of program structures can it capture?

(C) At last, we should note that Nakano’s system [7] has a strong connection to
our system. In [1], we are going to touch on the relation between Nakano’s system
and our system in detail.
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