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Abstract

We give alternative proofs of the completeness of two second order propositional intu-
itionistic logics with respect to Kripke models. One is the logic having the full comprehension
axiom, and the other has the constant domain axiom in addition. We also show that, for
disjunction free fragment, the constant domain axiom is not needed for the completeness
with respect to constant domain models. To show the completeness, we use “sequent tree
calculi”.

1 Introduction

Second order propositional intuitionistic logic (SOPIL) is obtained from the propositional intu-
itionistic logic by adding quantifiers which bind propositional variables. There are some variants
of SOPIL. Among them, this paper mainly treats the logic which is axiomatized by the following
inference rules in the sequent calculus:

A(B), Γ ⇒ C

∀xA(x), Γ ⇒ C
(∀ left)

Γ ⇒ A(p)
Γ ⇒ ∀xA(x)

(∀ right)

A(p), Γ ⇒ C

∃xA(x), Γ ⇒ C
(∃ left)

Γ ⇒ A(B)
Γ ⇒ ∃xA(x)

(∃ right)

where p does not occur in the lower sequent. We call this logic SOPIL0. (SOPIL0 is also
characterized by the “full comprehension axiom”: ∃x(x↔A).)

Recall that a Kripke model for propositional intuitionistic logic is of the form M = 〈W,R, I〉
where 〈W,R〉 is a partially ordered set of “worlds” and I is an interpretation which assigns an
R-upper closed subset to each propositional variable; that is, I = {Ip ∈ UP(W,R) | p is a
propositional variable} and UP(W,R) = {α ⊆ W | ∀a, b ∈ W[ if a ∈ α and aRb, then b ∈ α]}.
Then, for a formula A and a world a ∈ W, the relation a |= A (“A holds at a”) is inductively
defined as follows.

a |= p ⇔ a ∈ Ip. a 6|= ⊥. a |= A→B ⇔ (b 6|= A) or (b |= B) for all b such that aRb.
a |= A∧B ⇔ (a |= A) and (a |= B). a |= A∨B ⇔ (a |= A) or (a |= B).

A Kripke model for SOPIL0 is obtained from the above by adding the “domain” D = {Da ⊆
UP(W,R) | a ∈ W} that satisfies the hereditary condition: aRb ⇒ Da ⊆ Db. The quantifiers
are interpreted as follows.
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a |= ∀xA(x) ⇔ b |= A(α) for all b and all α such that aRb and α ∈ Da.
a |= ∃xA(x) ⇔ a |= A(α) for some α ∈ Da.

To describe the completeness theorem, we introduce one more condition — fullness — on
the domain of quantifiers. Given a formula A(p1, p2, . . . , pn), there is an n-array function f on
UP(W,R) such that f(α1, α2, . . . , αn) = {a ∈ W | a |= A(α1, α2, . . . , αn)}. We say that this
function f is induced by the formula A. For example, the formula p∨q induces the function
f(α, β) = α∪β. Then the domain Da is said to be full if the set Da is closed under any function
that is induced by a formula, and the Kripke model is said to be full if each Da is full. Note that
these definitions are informal; precise definitions are given in Section 5. A formula A is said to
be valid in the model if a |= A for all a ∈ W.

The completeness theorem is stated as follows: A formula is provable in SOPIL0 if and only
if it is valid in any full model. Moreover we have the constant domain case, like the first order
intuitionistic logic. The axiom schema ∀x(A∨B(x))→A∨∀xB(x) is called CD. Then we have
the completeness theorem: A formula is provable in SOPIL0 + CD if and only if it is valid in
any constant domain full model, where the model is said to be constant domain if Da = Db for
any a, b ∈ W. These completeness theorems or similar results have been proved in the literature
[2, 3, 4, 5, 6, 7]. In this paper, we give alternative proofs of them using “sequent tree calculi”
(or, often called “nested sequent”; see e.g. [1] for the history of nested sequent calculi).

The above theorems show that the two sets J = {A | A is valid in any full model} and
Jcd = {A | A is valid in any constant domain full model} are different; indeed, in Section 5, we
give a full model in which an instance

∀x
(
p ∨ ((p→x)∨¬x)

)
→

(
p ∨ ∀x((p→x)∨¬x)

)
of the axiom CD is not valid. On the other hand, we show the following:

The sets J and Jcd coincide if the language does not contain the disjunction (∨). (1)

One may doubt this result because, in SOPIL, disjunction can be represented by using other
symbols as

A∨B = ∀x((A→x)→(B→x)→x);

and the lack of disjunction seems to have no influence on the provability and validity. The
following is the reason why the result depends on the existence of disjunction. The condition
“Da is closed under any function that is induced by a formula”, which is the definition of the
fullness, is weakened by the lack of disjunction, and disjunction-free formulas do not require
that Da is closed under ∪.

The structure of this paper is as follows. In Sections 2 and 3, we give the definitions of formu-
las and sequent calculi. In Section 4, we study the replacement of A∨B by ∀x((A→x)→(B→x)→x)
in detail. In Section 5, we give definitions of Kripke models; then the soundness of sequent cal-
culi are shown in Section 6. In Section 7, we introduce a sequent tree calculus for SOPIL0,
and we prove its completeness. This argument is applied to SOPIL0 + CD in Section 8. So
far, roughly speaking, we show (i) if A is provable in the sequent calculus, then A is valid in
Kripke models (in Section 6); and (ii) if A is valid in Kripke models, then A is provable in
the sequent tree calculus (in Sections 7 and 8). Then the final piece to complete is (iii) if A is
provable in the sequent tree calculus, then A is provable in the sequent calculus. This is shown
in Section 9. Moreover, for disjunction-free case, we show a stronger result in Section 10: (iii+)
if A is provable in the disjunction-free sequent tree calculus for constant domain Kripke models,
then A is cut-free provable in the sequent calculus for SOPIL0. This implies the above fact (1)
and the cut-elimination theorem for disjunction-free SOPIL0. Finally, in Section 11, we give
precise statements of the main theorems of this paper; moreover, we make additional remarks
and give problems for future study.
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2 Formulas

We fix two countably infinite sets PropPara (of propositional parameters) and PropVar (of
propositional variables) such that PropPara ∩ PropVar = ∅. Both propositional parameters
and propositional variables are called propositional symbols. Then formulas are inductively
defined as follows.

Propositional symbols and ⊥ are formulas. If A and B are formulas and x is a
propositional variable, then (A→B), (A∧B), (A∨B), (∀xA), and (∃xA) are formulas.

Note that, for example, ∀p(p→p) is not a formula if p is a propositional parameter (only proposi-
tional variables can be bound by quantifiers). Propositional parameters are denoted by p, q, . . .,
propositional variables are denoted by x, y, . . ., and formulas are denoted by A,B, . . .. We con-
sider the logical operators ¬ and ↔ to be the abbreviations as follows. ¬A = A→⊥, and
A↔B = (A→B)∧(B→A). Parentheses are omitted by the convention that ∀x, ∃x and ¬ bind
more strongly than binary operators; ∧ and ∨ bind more strongly than → and ↔; and that
A1→A2→· · ·An is (A1→(A2→· · · (An−1→An) · · · )). For example, ∀xA→B∧C→D denotes the
formula (∀xA)→((B∧C)→D).

For a formula A, the set of free propositional variables in A and the set of propositional
parameters in A are denoted by FV(A) and PP(A) respectively. These are inductively defined
as follows.

FV(p) = ∅ and PP(p) = {p} for p ∈ PropPara. FV(x) = {x} and PP(x) = ∅
for x ∈ PropVar. FV(⊥) = PP(⊥) = ∅. FV(A ◦ B) = FV(A) ∪ FV(B) and
PP(A ◦ B) = PP(A) ∪ PP(B) for ◦ ∈ {→,∧,∨}. FV(∇xA) = FV(A) − {x} and
PP(∇xA) = PP(A) for ∇ ∈ {∀,∃}.

We call a formula A is closed if FV(A) = ∅.
If A and B are formulas and x is a propositional variable, then A[x :=B] denotes the formula

that is obtained from A by replacing all the free occurrences of x by B. This is inductively defined
as follows.

x[x :=B] = B. a[x :=B] = a if a ∈ PropPara∪PropVar and a 6= x. ⊥[x :=B] = ⊥.
(A1 ◦ A2)[x :=B] = (A1[x :=B]) ◦ (A2[x :=B]) for ◦ ∈ {→,∧,∨}. (∇xA)[x :=B] =
∇xA for ∇ ∈ {∀,∃}. (∇yA)[x :=B] = ∇y(A[x :=B]), if y 6= x and ∇ ∈ {∀,∃}.

Note that if B is a closed formula, then this substitution does not cause undesired binding of
a free-variable in B (such as (∃y(x∧y))[x :=¬y]) and we do not need the renaming of bound
variables. This is the reason why we include propositional parameters in the definition of for-
mulas. Note also that A[x1 :=B1][x2 :=B2] = A[x2 :=B2][x1 :=B1] if B1, B2 are closed formulas
and x1 6= x2. This can be proved by induction on A, and we will tacitly use this fact.

3 Sequent calculi

If Γ is a finite set of closed formulas and A is a closed formula, then the expression Γ ⇒ A is called
a sequent. As usual, if Γ = {B1, B2, . . . , Bn}, then Γ ⇒ A is written as B1, B2, . . . , Bn ⇒ A
instead of {B1, B2, . . . , Bn} ⇒ A.

LJ2 is a system which derives sequents. Note that all the formulas occurring below must be
closed since the definition of sequents. Axioms (initial sequents) of LJ2 are of the forms

A ⇒ A and ⊥ ⇒ A.

Inference rules of LJ2 are (cut), (weakening), (→ left), . . . , (∃ right) as follows.
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Γ ⇒ A A,∆ ⇒ B

Γ,∆ ⇒ B
(cut) Γ ⇒ A

B,Γ ⇒ A
(weakening)

Γ ⇒ A B,∆ ⇒ C

A→B,Γ,∆ ⇒ C
(→ left)

A,Γ ⇒ B

Γ ⇒ A→B
(→ right)

A,Γ ⇒ C

A∧B,Γ ⇒ C
(∧ left)

B,Γ ⇒ C

A∧B,Γ ⇒ C
(∧ left) Γ ⇒ A Γ ⇒ B

Γ ⇒ A∧B
(∧ right)

A,Γ ⇒ C B,Γ ⇒ C

A∨B,Γ ⇒ C
(∨ left) Γ ⇒ A

Γ ⇒ A∨B
(∨ right) Γ ⇒ B

Γ ⇒ A∨B
(∨ right)

A[x :=B], Γ ⇒ C

∀xA, Γ ⇒ C
(∀ left)(†1)

Γ ⇒ A[x :=p]
Γ ⇒ ∀xA

(∀ right)(†2)

A[x :=p], Γ ⇒ C

∃xA, Γ ⇒ C
(∃ left)(†2)

Γ ⇒ A[x :=B]
Γ ⇒ ∃xA

(∃ right)(†1)

(†1) Proviso: B is a closed formula.
(†2) Proviso: p is a propositional parameter which does not occur in the lower
sequent.

As usual, the propositional parameter p in (∀ right)/(∃ left) rules is called an eigenvariable.1

Note that the inference rules

A,A, Γ ⇒ B

A,Γ ⇒ B
(contraction)

Γ,A,B,∆ ⇒ C

Γ,B,A,∆ ⇒ C
(exchange)

are available because {A,A, Γ} = {A, Γ} and {Γ,A,B,∆} = {Γ,B,A,∆}.
We say that a formula A is provable in LJ2 (or, in another sequent calculus, say L) if the

sequent (⇒ A) is provable in LJ2 (or, in L). We will use the symbol “`” to mean the provability;
that is, “L ` Γ ⇒ A” means the fact that the sequent Γ ⇒ A is provable in the sequent calculus
L. For example, ∃x(x↔A) (full comprehension axiom) is provable in LJ2 for any closed formula
A:

A ⇒ A
⇒ A→A

(→r.) A ⇒ A
⇒ A→A

(→r.)

⇒ (A→A)∧(A→A)
(∧r.)

⇒ ∃x((x→A)∧(A→x))
(∃r.)

Sequent calculus LJ2CD is obtained from LJ2 by adding the “constant domain axiom”
which is any sequent of the form

∀x(A∨B) ⇒ A∨∀xB.

Note that x 6∈ FV(A) since A∨∀xB is a closed formula by the definition of sequent. The constant
domain axiom is not provable in LJ2; this will be shown in Section 6.

The following lemma will be used in Section 9.

Lemma 1 The following inference rules are derivable in LJ2CD.

A∨∀xB, Γ ⇒ C

∀x(A∨B), Γ ⇒ C
(∀-∨ left)

and
A→∀xB, Γ ⇒ C

∀x(A→B), Γ ⇒ C
(∀-→ left)

where A, ∀xB, C and all the formulas in Γ are closed formulas. ((∀-→ left) is derivable also in
LJ2.)

1p is not a propositional variable but a propositional parameter; however, we follow the convention.
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Proof (∀-∨ left)
(c.d.axiom)

∀x(A∨B) ⇒ A∨∀xB A∨∀xB, Γ ⇒ C

∀x(A∨B), Γ ⇒ C
(cut)

(∀-→ left) Let p be a propositional parameter such that p 6∈ PP(A,B).

(axiom)
A ⇒ A

(axiom)
B[x :=p] ⇒ B[x :=p]

A→B[x :=p], A ⇒ B[x :=p]
(→l.)

∀x(A→B), A ⇒ B[x :=p]
(∀l.)

∀x(A→B), A ⇒ ∀xB
(∀r.)

∀x(A→B) ⇒ A→∀xB
(→r.)

A→∀xB, Γ ⇒ C

∀x(A→B), Γ ⇒ C
(cut)

QED

4 Deleting disjunction

We say that a formula (or a sequent) is disjunction free if it contains no occurrence of ∨. Sequent
calculus LJ2df is obtained from LJ2 by imposing the restriction that all the sequents occurring
in the proofs are disjunction free. Of course neither (∨ left) nor (∨ right) is available in LJ2df .

It is natural to expect that: (†) A disjunction free sequent Γ ⇒ A is provable in LJ2df

whenever it is provable in LJ2. One may try to prove this by induction on the proof of Γ ⇒ A.
However, such a simple induction does not work; for example, if (Γ ⇒ A) = (∀xB, Γ ′ ⇒ A) is
inferred from (B[x :=C], Γ ′ ⇒ A) by (∀ left) rule and C contains ∨, then the induction hypothesis
does not work. In this section, we prove the above (†) using the fact that disjunction can be
expressed by universal quantification and implication (as mentioned in Section 1).

For a formula A, we define a set DF(A) of formulas as follows.

DF(a) = {a} if a is a propositional symbol. DF(⊥) = {⊥}.
DF(A∨B) = {∀x

(
(A′→x)→(B′→x)→x

)
| A′ ∈ DF(A), B′ ∈ DF(B), and x 6∈

FV(A′, B′)}.
DF(A ◦ B) = {A′ ◦ B′ | A′ ∈ DF(A) and B′ ∈ DF(B)}, for ◦ ∈ {→,∧}.
DF(∇xA) = {∇xA′ | A′ ∈ DF(A)}, for ∇ ∈ {∀,∃}.

The following properties are easily shown:

• DF(A) 6= ∅.

• All the elements in DF(A) are disjunction free formulas.

• If A is disjunction free, then DF(A) = {A}.

• If A′ ∈ DF(A), then FV(A′) = FV(A) and PP(A′) = PP(A).

We will tacitly use these. In the following, Adf will denote any (or some) formula in DF(A), and
A+B will denotes any (or some) formula of the form ∀x

(
(A→x)→(B→x)→x

)
provided that

x 6∈ FV(A, B). Roughly speaking, Adf is a formula that is obtained from A by replacing each
P∨Q by P+Q.

5



Lemma 2 The following inference rules are derivable in LJ2df (and in LJ2).

A, Γ ⇒ C B,Γ ⇒ C

A+B,Γ ⇒ C
(+left) Γ ⇒ A

Γ ⇒ A+B
(+ right) Γ ⇒ B

Γ ⇒ A+B
(+ right)

Proof (+ left)

A,Γ ⇒ C

Γ ⇒ A→C
(→r.)

B,Γ ⇒ C

Γ ⇒ B→C
(→r.)

(axiom)
C ⇒ C

(B→C)→C,Γ ⇒ C
(→l.)

(A→C)→(B→C)→C,Γ ⇒ C
(→l.)

∀x((A→x)→(B→x)→x), Γ ⇒ C
(∀l.)

where x 6∈ FV(A, B).
(+ right)

Γ ⇒ A
(axiom)
p ⇒ p

A→p, Γ ⇒ p
(→l.)

B→p,A→p, Γ ⇒ p
(weak.)

A→p, Γ ⇒ (B→p)→p
(→r.)

Γ ⇒ (A→p)→(B→p)→p
(→r.)

Γ ⇒ ∀x((A→x)→(B→x)→x)
(∀r.)

Γ ⇒ B
(axiom)
p ⇒ p

B→p, Γ ⇒ p
(→l.)

B→p,A→p, Γ ⇒ p
(weak.)

A→p, Γ ⇒ (B→p)→p
(→r.)

Γ ⇒ (A→p)→(B→p)→p
(→r.)

Γ ⇒ ∀x((A→x)→(B→x)→x)
(∀r.)

where x 6∈ FV(A, B) and p 6∈ PP(Γ,A,B). QED

We say that a closed formula A is an atomic instance of a formula B if A = B[x1 :=p1]
[x2 :=p2] · · · [xn :=pn] for some propositional variables x1, x2, . . . , xn and some propositional
parameters p1, p2, . . . , pn. We define an equivalence relation ⇔LJ2 between formulas as follows.

A ⇔LJ2 B if and only if any atomic instance of A↔B is provable in LJ2.

In other words, A ⇔LJ2 B means that LJ2 ` Aθ ⇒ Bθ and LJ2 ` Bθ ⇒ Aθ for any substitution
θ = [x1 :=p1][x2 :=p2] · · · [xn :=pn]. Similarly an equivalence relation ⇔LJ2df is defined using
LJ2df instead of LJ2.

Lemma 3 If A′ ∈ DF(A) and A′′ ∈ DF(A), then A ⇔LJ2 A′ and A′ ⇔LJ2df A′′.

Proof By induction on A, we prove (1) LJ2 ` Aθ ⇒ A′θ, (2) LJ2 ` A′θ ⇒ Aθ, (3) LJ2df `
A′θ ⇒ A′′θ, and (4) LJ2df ` A′′θ ⇒ A′θ, where FV(A) = {x1, x2, . . . , xn}, θ = [x1 :=p1]
[x2 :=p2] · · · [xn :=pn], and p1, p2, · · · , pn are arbitrary propositional parameters. Here we show
a few cases.

If A = B∨C, then A′ = B′+C ′ and A′′ = B′′+C ′′ for some B′, B′′ ∈ DF(B) and C ′, C ′′ ∈
DF(C). Then (3) is shown as follows.

(i.h.)
B′θ ⇒ B′′θ

B′θ ⇒ B′′θ + C ′′θ
(+r.)(Lem.2)

(i.h.)
C ′θ ⇒ C ′′θ

C ′θ ⇒ B′′θ + C ′′θ
(+r.)(Lem.2)

B′θ + C ′θ ⇒ B′′θ + C ′′θ
(+l.)(Lem.2)

Note that B′θ+C ′θ = (B′+C ′)θ because B′+C ′ = ∀y((B′→y)→(C ′→y)→y) and y 6∈ {x1, x2, . . . , xn}
If A = ∀yB, then A′ = ∀yB′ for some B′ ∈ DF(B). Then (1) is shown as follows.

(i.h.)
Bθ[y :=p] ⇒ B′θ[y :=p]
∀y(Bθ) ⇒ B′θ[y :=p]

(∀l.)

∀y(Bθ) ⇒ ∀y(B′θ)
(∀r.)
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where p is a fresh propositional parameter. Note that ∀y(Bθ) = (∀yB)θ because y 6∈ {x1, x2, . . . , xn}.
QED

Lemma 4 If A ∈ DF(B[x :=C]) and C is a closed formula, then there are formulas Bdf ∈
DF(B) and Cdf ∈ DF(C) such that A ⇔LJ2df Bdf [x :=Cdf ].

Proof By induction on B.
(Case 1: B = x) Define Bdf = x and Cdf = A.
(Case 2: B is a propositional symbol other than x, or B = ⊥) Define Bdf = A = B.
(Case 3: B = B1∨B2) Assume A ∈ DF((B1∨B2)[x :=C]) = DF(B1[x :=C]∨B2[x :=C]).

By the definition of DF(), A = ∀y((D1→y)→(D2→y)→y) for some D1, D2, and y such that
D1 ∈ DF(B1[x :=C]), D2 ∈ DF(B2[x :=C]), and y 6∈ FV(D1, D2). Then, by the induction
hypotheses, there are formulas Bdf

1 ∈ DF(B1), Cdf
1 ∈ DF(C), Bdf

2 ∈ DF(B2), Cdf
2 ∈ DF(C), such

that

D1 ⇔LJ2df Bdf
1 [x :=Cdf

1 ] (2)

and

D2 ⇔LJ2df Bdf
2 [x :=Cdf

2 ]. (3)

On the other hand, by Lemma 3, we have Cdf
1 ⇔LJ2df Cdf

2 and therefore Bdf
2 [x :=Cdf

1 ] ⇔LJ2df

Bdf
2 [x :=Cdf

2 ]; this and (3) imply

D2 ⇔LJ2df Bdf
2 [x :=Cdf

1 ]. (4)

Now let z be a fresh propositional variable and define Bdf = ∀z((Bdf
1 →z)→(Bdf

2 →z)→z). We
have

A = ∀y((D1→y)→(D2→y)→y)
⇔LJ2df ∀z((D1→z)→(D2→z)→z)

⇔LJ2df ∀z
(
(Bdf

1 [x :=Cdf
1 ]→z)→(Bdf

2 [x :=Cdf
1 ]→z)→z

)
(∵ (2) and (4))

=
(
∀z

(
(Bdf

1 →z)→(Bdf
2 →z)→z

))
[x :=Cdf

1 ]

= Bdf [x :=Cdf
1 ].

(Case 4: B = B1 ◦B2 and ◦ ∈ {→,∧}) Assume A ∈ DF((B1 ◦B2)[x :=C]) = DF(B1[x :=C]◦
B2[x :=C]). By the definition of DF(), A = D1 ◦ D2 for some D1, D2, and y such that D1 ∈
DF(B1[x :=C]) and D2 ∈ DF(B2[x :=C]). Then, by the induction hypotheses, there are formulas
Bdf

1 ∈ DF(B1), Cdf
1 ∈ DF(C), Bdf

2 ∈ DF(B2), Cdf
2 ∈ DF(C), such that

D1 ⇔LJ2df Bdf
1 [x :=Cdf

1 ] (5)

and

D2 ⇔LJ2df Bdf
2 [x :=Cdf

2 ]; (6)

and we have

D2 ⇔LJ2df Bdf
2 [x :=Cdf

1 ] (7)

by the similar argument to (4). Then define Bdf = Bdf
1 ◦ Bdf

2 ; we have

A = D1 ◦ D2
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⇔LJ2df Bdf
1 [x :=Cdf

1 ] ◦ Bdf
2 [x :=Cdf

1 ] (∵ (5) and (7))

= Bdf [x :=Cdf
1 ].

(Case 5: B = ∇yB1 and ∇ ∈ {∀,∃}) If y = x, then define Bdf = A. In the following, we
assume y 6= x and A ∈ DF((∇yB1)[x :=C]) = DF(∇y(B1[x :=C])). By the definition of DF(),
A = ∇yD for some D such that D ∈ DF(B1[x :=C]). Then, by the induction hypothesis, there
are formulas Bdf

1 ∈ DF(B1) and Cdf ∈ DF(C) such that

D ⇔LJ2df Bdf
1 [x :=Cdf ]. (8)

Then define Bdf = ∇yBdf
1 ; we have

A = ∇yD

⇔LJ2df ∇y(Bdf
1 [x :=Cdf ]) (∵ (8))

= Bdf [x :=Cdf ].

QED

Lemma 5 If LJ2 ` A1, A2, . . . , An ⇒ A0, then LJ2df ` Adf
1 , Adf

2 , . . . , Adf
n ⇒ Adf

0 , for some
Adf

0 , Adf
1 , . . . , Adf

n such that Adf
i ∈ DF(Ai).

Proof By induction on the proof of A1, A2, . . . , An ⇒ A0 in LJ2. Here we show a few cases.
Suppose that A1 = B∨C and that the last inference rule is

B,A2, . . . , An ⇒ A0 C,A2, . . . , An ⇒ A0

B∨C, A2, . . . , An ⇒ A0.
(∨ left)

Then we have

(i.h.)
Bdf , Adf

2 , . . . , Adf
n ⇒ Adf

0

(i.h.)
Cdf , Adf

2
′
, . . . , Adf

n
′ ⇒ Adf

0
′

.... (∗)
Cdf , Adf

2 , . . . , Adf
n ⇒ Adf

0

Bdf+Cdf , Adf
2 , . . . , Adf

n ⇒ Adf
0

(+ left) by Lemma 2

where (∗) is obtained by the fact Adf
i ⇔LJ2df Adf

i
′ (Lemma 3) and the cut rule.

Suppose that A1 = ∀xB and that the last inference rule is

B[x :=C], A2, . . . , An ⇒ A0

∀xB,A2, . . . , An ⇒ A0.
(∀ left)

Then we have
(i.h.)

(B[x :=C])df , Adf
2 , . . . , Adf

n ⇒ Adf
0

Bdf [x :=Cdf ], Adf
2 , . . . , Adf

n ⇒ Adf
0

(∗)

∀xBdf , Adf
2 , . . . , Adf

n ⇒ Adf
0

(∀ left)

where (∗) is obtained by Lemma 4 and the cut rule. QED

Note that if both A′ and A′′ are elements of DF(A), then they are α-equivalent (that is, A′′

is obtained from A′ by renaming bound variables), and A′ ⇔LJ2df A′′ (Lemma 3). Hence, from
now on, we will identify A′ with A′′; in other words, given A, we consider Adf to be a unique
formula. For example, the statement of Lemma 5 can be simplified as follows: If LJ2 ` Γ ⇒ A,
then LJ2df ` Γ df ⇒ Adf , where Γ df = {Adf | A ∈ Γ}.
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Theorem 6 For any sequent Γ ⇒ A, the following three conditions are equivalent.

(1) LJ2 ` Γ ⇒ A.

(2) LJ2 ` Γ df ⇒ Adf .

(3) LJ2df ` Γ df ⇒ Adf .

Proof (1 ⇒ 3) is implied by Lemma 5. (3 ⇒ 2) is trivial. (2 ⇒ 1) is implied by Lemma 3.
QED

Corollary 7 For any disjunction free sequent Γ ⇒ A, the following two conditions are equiva-
lent.

(1) LJ2 ` Γ ⇒ A.

(2) LJ2df ` Γ ⇒ A.

5 Kripke model

If 〈W,R〉 is a partially ordered set, then UP(W,R) denotes the set of R-upward closed subsets
of W; that is

UP(W,R) = {α ⊆ W | ∀a, b ∈ W[ if a ∈ α and aRb, then b ∈ α.]}

We define a Kripke model (for second order propositional intuitionistic logic) to be a tuple
M = 〈W,R,D, I〉 as follows.

• W is a non-empty set (of “worlds”).

• R is a partial order (“accessibility relation”) on W.

• D = {Da | a ∈ W} where each Da is a non-empty subset of UP(W,R) satisfying the
condition: aRb ⇒ Da ⊆ Db. (Da is the domain of quantification at the world a).

• I = {Ip | p ∈ PropPara} where each Ip is an element of UP(W,R). (Ip is the “interpre-
tation” of the propositional parameter p.)

M is said to be constant domain if Da = Db for all a, b ∈ W.
Given a Kripke model M = 〈W,R,D, I〉, we extend the language by adding “propositional

constant” α for each α ∈ UP(W,R). We call α the name of α, and define Name(W,R) =
{α | α ∈ UP(W,R)}. The definition of formulas (Section 2) are extended by the clause: “Each
name α is a formula.” We call a formula of this extended language an “M-formula”; in other
words, an M-formula is a formula in which names of elements of UP(W,R) can be used like
propositional symbols.

For a Kripke model M = 〈W,R,D, I〉, a ∈ M, and a closed M-formula A, the rela-
tion M, a |= A (“A holds at a world a in M”) is defined inductively as follows (“M” is often
omitted).

a |= p ⇐⇒ a ∈ Ip, for p ∈ PropPara.

a |= α ⇐⇒ a ∈ α, for α ∈ Name(W,R).

a 6|= ⊥.

a |= A→B ⇐⇒ [(b 6|= A) or (b |= B)] for all b such that aRb.
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a |= A∧B ⇐⇒ (a |= A) and (a |= B).

a |= A∨B ⇐⇒ (a |= A) or (a |= B).

a |= ∀xA ⇐⇒ b |= A[x :=α] for all b such that aRb and all α ∈ Db.

a |= ∃xA ⇐⇒ a |= A[x :=α] for some α ∈ Da.

We define [[A]]M, which is a subset of W, by

[[A]]M = {a ∈ W | M, a |= A}.

The following equations are easily verified by the definition.

[[p]]M = Ip. [[α]]M = α. [[⊥]]M = ∅.
[[A∧B]]M = [[A]]M ∩ [[B]]M. [[A∨B]]M = [[A]]M ∪ [[B]]M.

Lemma 8 If M = 〈W,R,D, I〉 is a Kripke model, then [[A]]M ∈ UP(M,R) for any closed
M-formula A.

Proof By induction on the complexity (i.e., the number of occurrences of →, ∧, ∨, ∀, and
∃) of A, we show the following: If a |= A and aRb, then b |= A. Note that the condition
“aRb ⇒ Da ⊆ Db” is used in the case that A = ∃xB. QED

From now on, M always denotes a Kripke model 〈W,R,D, I〉.
We say that a closed M-formula A is interpretable at a world a if the following two conditions

hold for all p ∈ PropPara and all α ∈ Name(W,R):

If p occurs in A, then Ip ∈ Da. If α occurs in A, then α ∈ Da.

M is said to be full if the following condition holds for any closed M-formula A and any world
a ∈ W.

(†) If A is interpretable at a, then [[A]]M ∈ Da.

If M is full, then each domain Da contains ∅ (∵ take ⊥ as A in (†)), and Da is closed under ∩
and ∪ (∵ take α∧β and α∨β as A in (†)).

On the other hand, M is said to be df-full if the condition (†) holds for any disjunction free
closed M-formula A and any world a. Any full model is df-full; on the other hand, the converse
is not true in general because a domain Da might not be closed under ∪ in a df-full model.

(Remark) The term “full” is due to Sørensen and Urzyczyn [7]. However the definition is
slightly different. M is said to be full in the sense of Sørensen and Urzyczyn if the following
condition holds for any closed M-formula A and any world a ∈ W.

If A is interpretable at a, then there is an element α ∈ Da such that [[A]]M and α
coincide above a; that is, {a′ | a′ ∈ [[A]]M and aRa′} = {a′ | a′ ∈ α and aRa′}.

Our definition of “full” is stronger and simpler than this.

(Example) Let α = {a, b, c}, β = {b, c}, γ = {c}. We define a Kripke model M = 〈W,R,D, I〉
as follows: W = {a, b, c}. aRbRc. Da = {α, β, ∅}. Db = Dc = {α, β, γ, ∅}. We can easily verify
that this is a full Kripke model. Now consider two M-formulas L and R as

L = ∀x
(
β ∨ ((β→x)∨¬x)

)
, R = β ∨ ∀x((β→x)∨¬x),

which are instances of, respectively, the left-hand and right-hand sides of the constant domain
axiom of LJ2CD. Then, a |= L (∵ a |= β→α, a |= β→β, a |= ¬∅, b |= β, c |= β), and a 6|= R
(∵ a 6|= β, b 6|= β→γ, b 6|= ¬γ).
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6 Soundness of sequent calculi

Lemma 9 Let M = 〈W,R,D, I〉 be a Kripke model, x be a propositional variable, A be an
M-formula such that FV(A) ⊆ {x}, and B,C be closed M-formulas. If [[B]]M = [[C]]M, then
[[A[x :=B]]]M = [[A[x :=C]]]M.

Proof By induction on the complexity of A. QED

Lemma 10 Suppose that two Kripke models M = 〈W,R,D, I〉 and M′ = 〈W,R,D, I ′〉 have
〈W,R,D〉 in common.

(1) Let A be a closed M-formula (and also a closed M′-formula). If Ip = I ′
p for all p ∈ PP(A),

then [[A]]M = [[A]]M′.

(2) If M is full, then so is M′.

Proof (1) By induction on the complexity of A.
(2) Assume that M′ is not full; that is, there are a closed M′-formula A and a world a ∈ W

such that A is interpretable at a in M′ and [[A]]M′ 6∈ Da. Let A◦ be a formula obtained from
A by replacing each pi ∈ PP(A) with the name I ′

pi
. A◦ is a closed M-formula (for I ′

pi
is also

a name in M), and we have [[A◦]]M = [[A◦]]M′ = [[A]]M′ by Lemma 10(1) and Lemma 9. This
implies that M is not full, because A◦ is interpretable at a and [[A◦]]M 6∈ Da. QED

We say that a sequent B1, B2, . . . , Bn ⇒ A is valid in a Kripke model M = 〈W,R,D, I〉 if
the following condition holds for any world a ∈ W:

If B1, B2, . . . , Bn and A are interpretable at a and if M, a |= B1, M, a |= B2, . . . ,
and M, a |= Bn, then M, a |= A.

Moreover, a closed formula A is said to be valid in M if the following condition holds for any
world a:

If A is interpretable at a, then M, a |= A.

In other words, a formula A is valid if and only if the sequent ⇒ A is valid.

Theorem 11 (Soundness of LJ2) If LJ2 ` Γ ⇒ A, then this sequent is valid in any full
Kripke model.

Proof By induction on the proof of Γ ⇒ A in LJ2. This theorem is trivial when Γ ⇒ A is an
axiom A ⇒ A or ⊥ ⇒ A.

Then we show that the property “valid in any full Kripke model” is preserved through any in-
ference rule R. To show this, we introduce a condition (♥) for a sequent, say B1, B2, . . . , Bn ⇒ A,
as follows.

(♥) There is a full Kripke model M = 〈W,R,D, I〉 and a world a ∈ W such
that B1, B2, . . . , Bn and A are interpretable at a, M, a |= B1, M, a |= B2, . . . ,
M, a |= Bn, and M, a 6|= A.

This is the negation of the property in question. Now we will show the following: If the conclusion
of R satisfies the condition (♥), then so does one of the premises of R.

(Case 1) R = (cut):
∆ ⇒ C C,Π ⇒ A

∆,Π ⇒ A
(cut)

11



(Subcase 1-1: C is interpretable at a.) If M, a |= C, then the right premise (C,Π ⇒ A)
satisfies the condition (♥); otherwise the left premise does.

(Subcase 1-2: C is not interpretable at a.) In this case, some propositional parameters,
say q1, q2, . . . , qk, violate the interpretability of C. Then we modify the Kripke model M by
replacing the interpretation of q1, q2, . . . , qk to ∅ (or, to another element in Da). That is, we
define M′ = 〈W,R,D, I ′〉 where

I ′
p =

{
Ip if p 6∈ {q1, q2, . . . , qk}
∅ if p ∈ {q1, q2, . . . , qk}

This M′ is full (by Lemma 10(2)) and all the formulas in (∆,Π,A,C) are interpretable at a.
Moreover, by Lemma 10(1), we have [[F ]]M′ = [[F ]]M for all F in (Γ,Π,A) since qi 6∈ PP(F ).
Then, similarly to the subcase 1-1, either the left premise or the right premise satisfies the
condition (♥).

(Case 2) R = (∀ left):
B[x :=C],∆ ⇒ A

∀xB,∆ ⇒ A
(∀ left)

(Subcase 2-1: C is interpretable at a.) Since M is full, there is γ ∈ Da such that [[C]]M = γ.
Then we have M, a |= ∀xB (∵ (♥) of ∀xB,∆ ⇒ A), M, a |= B[x :=γ] (∵ definition of Kripke
model), and M, a |= B[x :=C] (∵ Lemma 9), which implies (♥) for B[x :=C],∆ ⇒ A.

(Subcase 2-2: C is not interpretable at a.) Similarly to subcase 1-2, we modify M by
replacing the interpretation of propositional parameters in C that violate the interpretability.
Then, similarly to subcase 2-1, we get the condition (♥) for B[x :=C],∆ ⇒ A.

(Case 3) R = (∀ right):
Γ ⇒ A′[x :=p]

Γ ⇒ ∀xA′ (∀ right)

By the condition (♥) of Γ ⇒ ∀xA′, we have M, a 6|= ∀xA′; therefore there are b ∈ W and α ∈ Db

such that aRb and M, b 6|= A′[x :=α] (note that M, b |= Γ ). We modify M by replacing the
interpretation of p to α. The resulting model, called M′, is full and we have M′, b |= Γ and
M′, b 6|= A′[x :=p] by Lemmas 9 and 10. This is the condition (♥) of Γ ⇒ A′[x :=p].

The other cases are similar. QED

Recall that LJ2df is the system in which all the sequents are disjunction free. The above
proof holds for LJ2df and df-full models (note that, in case 2, the formula C is disjunction free).
Therefore we have the following:

Theorem 12 (Soundness of LJ2df) If LJ2df ` Γ ⇒ A, then this sequent is valid in any df-
full Kripke model.

By Theorem 11, we can show that LJ2CD is strictly stronger than LJ2:

Theorem 13 LJ2 does not prove the constant domain axiom ∀x(A∨B) ⇒ A∨∀xB in general.

Proof We have
LJ2 6` ∀x(p∨((p→x)∨¬x) ⇒ p∨∀x((p→x)∨x)

by the example in the previous section and Theorem 11. QED

On the other hand, we can easily verify that the constant domain axiom is valid in any
constant domain Kripke model, and the proof of Lemma 11 is available for constant domain
Kripke models. Then we have:

Theorem 14 (Soundness of LJ2CD) If LJ2CD ` Γ ⇒ A, then this sequent is valid in any
constant domain full Kripke model.
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〈〉

〈1〉 〈2〉

〈2, 1〉 〈2, 2〉

Figure 1: Label tree

〈〉 p, q ⇒ ¬p,¬q {p, q}

〈1〉 ⇒ ¬¬p {p, q} 〈2〉 r→p ⇒ q {p, q, r}

〈2, 1〉 ¬¬q ⇒ p∧q{p, q, r} 〈2, 2〉 ⇒ s∨p {p, q, r, s}

Figure 2: Sequent tree

7 Sequent tree calculus

In this section, we introduce a “sequent tree calculus”, and prove its completeness.
If n1, n2, . . . , nk are natural numbers, then the finite sequence 〈n1, n2, . . . , nk〉 is called a label.

In the following, 〈~n〉 denotes a label. We define a partial order ¹ between labels by 〈~m〉 ¹ 〈~n〉
if and only if 〈~m〉 is a prefix of 〈~n〉, that is, 〈~n〉 = 〈~m, a1, a2, . . . , ak〉 for some k ≥ 0 and some
a1, a2,. . . , ak. We say that a (finite or infinite) set T of labels is a label tree if T contains the
empty label 〈〉 and if T is closed under prefix, that is, if 〈~m〉 ¹ 〈~n〉 ∈ T , then 〈~m〉 ∈ T . For
example, {〈〉, 〈1〉, 〈2〉, 〈2, 1〉, 〈2, 2〉} is a label tree, where 〈〉 is the root node, nodes 〈1〉 and 〈2〉
are the children of the root node, and nodes 〈2, 1〉 and 〈2, 2〉 are the children of 〈2〉, as illustrated
in Figure 1.

If Γ is a set of closed formulas and ∆ is a non-empty set of closed formulas, then the
expression Γ ⇒ ∆ is called a c-sequent (Γ and ∆ may be infinite sets). A sequent tree is a
label tree each node of which is associated with a pair of a c-sequent and a set of propositional
parameters. By a “finite sequent tree”, we mean a sequent tree whose label tree is a finite set
and all the c-sequents and the sets of propositional parameters are finite.

Figure 2 is an example of finite sequent tree, in which the root is associated with the c-
sequent (p, q ⇒ ¬p,¬q) and the set {p, q}, and the inner node 〈2〉 is associated with the c-sequent
(r→p ⇒ q) and the set {p, q, r}.

A labelled formula is an expression
〈~n〉 :A

where 〈~n〉 is a label and A is a formula. In the following, Γ,∆, . . . will denote (finite or infinite)
sets of labelled formulas. Using labelled formulas, we will write any sequent tree in compact
form as

Γ
T,f⇒ ∆

where T is its label tree, f is a function from T to P(PropPara) such that f(〈~n〉) is the
set of propositional parameters that is associated with the node 〈~n〉, and Γ and ∆ are sets of
labelled formulas such that (〈~n〉 : A) ∈ Γ (or ∆) if and only if the formula A is in the left (or
right, respectively) part of the c-sequent that is associated with the node 〈~n〉. For example, the
sequent tree of Figure 2 is written as

〈〉 :p, 〈〉 :q, 〈2〉 :r→p, 〈2, 1〉 :¬¬q
T,f⇒ 〈〉 :¬p, 〈〉 :¬q, 〈1〉 :¬¬p, 〈2〉 :q, 〈2, 1〉 :p∧q, 〈2, 2〉 :s∨p
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where T = {〈〉, 〈1〉, 〈2〉, 〈2, 1〉, 〈2, 2〉}, f(〈〉) = f(〈1〉) = {p, q}, f(〈2〉) = f(〈2, 1〉) = {p, q, r}, and
f(〈2, 2〉) = {p, q, r, s}.

We say that a sequent tree Γ
T,f⇒ ∆ is legal if is satisfies the following two conditions. (1) If

(〈~n〉 :A) ∈ Γ ∪ ∆, then PP(A) ⊆ f(〈~n〉); in other words, f(〈~n〉) denotes the set of propositional
parameters that can be used in the formulas in the node 〈~n〉. (2) If 〈~m〉 ¹ 〈~n〉, then f(〈~m〉) ⊆
f(〈~n〉); therefore, available propositional parameters are inherited (sometimes new elements are
added) by the children of the node. All the sequent tree that we treat are legal; so we will use
the term “sequent tree” to mean “legal sequent tree” from now on.

We introduce a system TLJ2, which derives finite sequent trees. Axioms of TLJ2 are finite
sequent trees of the forms

〈~n〉 :A, Γ
T,f⇒ ∆, 〈~n〉 :A and 〈~n〉 :⊥, Γ

T,f⇒ ∆, 〈~n〉 :A.

Inference rules of TLJ2 are the following eleven ((heredity), (∧ left), . . . , (∃ right)). Note that
the cut rule is not there. In those rules, 〈~n〉 is called the operated node.

〈~n, a〉 :A, Γ
T,f⇒ ∆

〈~n〉 :A, Γ
T,f⇒ ∆

(heredity)(†1)

(†1) Proviso: PP(A) ⊆ f(〈~n〉) (therefore the lower sequent tree is legal).

Γ
T,f⇒ ∆, 〈~n〉 :A 〈~n〉 :B, Γ

T,f⇒ ∆

〈~n〉 :A→B, Γ
T,f⇒ ∆

(→ left)
〈~n, a〉 :A, Γ

T+,f+

⇒ ∆, 〈~n, a〉 :B

Γ
T,f⇒ ∆, 〈~n〉 :A→B

(→ right)(†2)

(†2) Proviso: 〈~n, a〉 is a leaf of T+, the c-sequent associated with 〈~n, a〉 is just
(A ⇒ B) (this node has no other formula than A,B), T = T+\{〈~n, a〉}, f+(〈~n, a〉) =
f+(〈~n〉), and f = f+ ¹T .

〈~n〉 :A, 〈~n〉 :B, Γ
T,f⇒ ∆

〈~n〉 :A∧B, Γ
T,f⇒ ∆

(∧ left)
Γ

T,f⇒ ∆, 〈~n〉 :A Γ
T,f⇒ ∆, 〈~n〉 :B

Γ
T,f⇒ ∆, 〈~n〉 :A∧B

(∧ right)

〈~n〉 :A, Γ
T,f⇒ ∆ 〈~n〉 :B, Γ

T,f⇒ ∆

〈~n〉 :A∨B, Γ
T,f⇒ ∆

(∨ left)
Γ

T,f⇒ ∆, 〈~n〉 :A, 〈~n〉 :B

Γ
T,f⇒ ∆, 〈~n〉 :A∨B

(∨ right)

〈~n〉 :A[x :=B], Γ
T,f⇒ ∆

〈~n〉 :∀xA, Γ
T,f⇒ ∆

(∀ left)(†3)
Γ

T+,f+

⇒ ∆, 〈~n, a〉 :A[x :=p]

Γ
T,f⇒ ∆, 〈~n〉 :∀xA

(∀ right)(†4)

(†3) Proviso: B is a closed formula.
(†4) Proviso: p is a propositional parameter (called eigenvariable) which does not
occur in the lower sequent tree, 〈~n, a〉 is a leaf of T+, the c-sequent associated with
〈~n, a〉 is just (⇒ A[x :=p]), T = T+ \ {〈~n, a〉}, f+(〈~n, a〉) = f+(〈~n〉) ∪ {p}, and
f = f+ ¹T .

〈~n〉 :A[x :=p], Γ
T,f+

⇒ ∆

〈~n〉 :∃xA, Γ
T,f⇒ ∆

(∃ left)(†5)
Γ

T,f⇒ ∆, 〈~n〉 :A[x :=B]

Γ
T,f⇒ ∆, 〈~n〉 :∃xA

(∃ right)(†6)
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(†5) Proviso: p is a propositional parameter (called eigenvariable) which does not
occur in the lower sequent tree, and f+ and f satisfy the following equation.

f+(〈~m〉) =

{
f(〈~m〉) ∪ {p} if 〈~m〉 is equal to or a descendant of 〈~n〉,
f(〈~m〉) otherwise.

(†6) B is a closed formula.

For example, if we apply the rules (→ right), (∀ right), (∀ left), and (∃ left) to the sequent
tree of Figure 2 (in which the operated node is 〈2〉), the resulting sequent trees are Figures 3,
4, 5, and 6, respectively.

We say that a sequent tree Γ
T,f⇒ ∆ contains a sequent tree Γ ′ T ′,f ′

⇒ ∆′, denoted by “(Γ
T,f⇒ ∆) ⊇

(Γ ′ T ′,f ′
⇒ ∆′)” or “(Γ ′ T ′,f ′

⇒ ∆′) ⊆ (Γ
T,f⇒ ∆),” if the following conditions hold: T ⊇ T ′, Γ ⊇ Γ ′,

∆ ⊇ ∆′, and f(〈~n〉) ⊇ f ′(〈~n〉) for all 〈~n〉 ∈ T ′. Especially we say that Γ
T,f⇒ ∆ contains a TLJ2-

axiom if it contains (〈~n〉 :A,Γ ′ T ′,f ′
⇒ ∆′, 〈~n〉 :A) or (〈~n〉 :⊥, Γ ′ T ′,f ′

⇒ ∆′, 〈~n〉 :A) for some ~n, A, Γ ′,

∆′, T ′, and f ′. Note that Γ
T,f⇒ ∆ does not contain TLJ2-axioms if and only if the following

two conditions hold for any label 〈~n〉 ∈ T and any closed formula A: (1) (〈~n〉 :A ∈ ∆) implies
(〈~n〉 :A 6∈ Γ ). (2) 〈~n〉 :⊥ 6∈ Γ .

We say that a sequent tree Γ
T,f⇒ ∆ is saturated if it satisfies all the conditions (heredity), (→

left), . . . , (∃ right) below, where 〈~n〉 is an arbitrary label, A,B are arbitrary closed formulas, x is
an arbitrary propositional variable, and A′ is an arbitrary formula that satisfies FV(A′) ⊆ {x}.

(heredity) If 〈~n〉 :A ∈ Γ , then 〈~n, a〉 :A ∈ Γ for any child 〈~n, a〉 of 〈~n〉 in T .

(→ left) If 〈~n〉 :A→B ∈ Γ , then 〈~n〉 :A ∈ ∆ or 〈~n〉 :B ∈ Γ .

(→ right) If 〈~n〉 : A→B ∈ ∆, then there is a child 〈~n, a〉 of 〈~n〉 such that 〈~n, a〉 : A ∈ Γ and
〈~n, a〉 :B ∈ ∆.

(∧ left) If 〈~n〉 :A∧B ∈ Γ , then 〈~n〉 :A ∈ Γ and 〈~n〉 :B ∈ Γ .

(∧ right) If 〈~n〉 :A∧B ∈ ∆, then 〈~n〉 :A ∈ ∆ or 〈~n〉 :B ∈ ∆.

(∨ left) If 〈~n〉 :A∨B ∈ Γ , then 〈~n〉 :A ∈ Γ or 〈~n〉 :B ∈ Γ .

(∨ right) If 〈~n〉 :A∨B ∈ ∆, then 〈~n〉 :A ∈ ∆ and 〈~n〉 :B ∈ ∆.

(∀ left) If 〈~n〉 :∀xA′ ∈ Γ and PP(B) ⊆ f(〈~n〉), then 〈~n〉 :A′[x :=B] ∈ Γ .

(∀ right) If 〈~n〉 : ∀xA′ ∈ ∆, then there are a child 〈~n, a〉 of 〈~n〉 and a closed formula C such
that PP(C) ⊆ f(〈~n, a〉) and 〈~n, a〉 :A′[x :=C] ∈ ∆.

(∃ left) If 〈~n〉 : ∃xA′ ∈ Γ , then there is a closed formula C such that PP(C) ⊆ f(〈~n〉) and
〈~n〉 :A′[x :=C] ∈ Γ .

(∃ right) If 〈~n〉 :∃xA′ ∈ ∆ and PP(B) ⊆ f(〈~n〉), then 〈~n〉 :A′[x :=B] ∈ ∆.

Lemma 15 Let Γ
T,f⇒ ∆ be a finite sequent tree. If TLJ2 6` Γ

T,f⇒ ∆, then there is a sequent

tree Γ+ T+,f+

⇒ ∆+ which is saturated, contains Γ
T,f⇒ ∆, and does not contain TLJ2-axioms.
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〈〉 p, q ⇒ ¬p,¬q {p, q}

〈1〉 ⇒ ¬¬p {p, q} 〈2〉 r→p ⇒ q, ¬¬q→(p∧q) {p, q, r}

〈2, 2〉 ⇒ s∨p {p, q, r, s}

Figure 3: A conclusion of (→ right) for Fig.2.

〈〉 p, q ⇒ ¬p,¬q {p, q}

〈1〉 ⇒ ¬¬p {p, q} 〈2〉 r→p ⇒ q, ∀x(x∨p) {p, q, r}

〈2, 1〉 ¬¬q ⇒ p∧q{p, q, r}

Figure 4: A conclusion of (∀ right) for Fig.2.

〈〉 p, q ⇒ ¬p,¬q {p, q}

〈1〉 ⇒ ¬¬p {p, q} 〈2〉 ∀x(x) ⇒ q {p, q, r}

〈2, 1〉 ¬¬q ⇒ p∧q{p, q, r} 〈2, 2〉 ⇒ s∨p {p, q, r, s}

Figure 5: A conclusion of (∀ left) for Fig.2.

〈〉 p, q ⇒ ¬p,¬q {p, q}

〈1〉 ⇒ ¬¬p {p, q} 〈2〉 ∃y(y→p) ⇒ q {p, q}

〈2, 1〉 ¬¬q ⇒ p∧q{p, q} 〈2, 2〉 ⇒ s∨p {p, q, s}

Figure 6: A consequence of (∃ left) for Fig.2.
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Proof A tuple 〈〈~n〉, A,B, x,A′〉 is called a seed if 〈~n〉 is a label, A and B are closed formulas, x
is a propositional variable, and A′ is a formula satisfying FV(A′) ⊆ {x}. Let SEED be the set
of all seeds. Since SEED is a countable set, there is an infinite sequence

〈〈 ~n1〉, A1, B1, x1, A
′
1〉, 〈〈 ~n2〉, A2, B2, x2, A

′
2〉, . . . , 〈〈~ni〉, Ai, Bi, xi, A

′
i〉, . . .

of seeds such that any seed occurs infinitely often in this sequence; in other words, for any
seed 〈〈~n〉, A,B, x,A′〉 and any natural number i, there is a natural number j ≥ i such that
〈〈 ~nj〉, Aj , Bj , xj , A

′
j〉 = 〈〈~n〉, A,B, x,A′〉.

Suppose TLJ2 6` Γ
T,f⇒ ∆ where Γ

T,f⇒ ∆ is a finite sequent tree. Then we construct an infinite
sequence (Γ0

T0,f0⇒ ∆0), (Γ1
T1,f1⇒ ∆1), . . . of finite sequent trees by the following procedure.

(Step 0)

(Γ0
T0,f0⇒ ∆0) = (Γ

T,f⇒ ∆).

(Step i + 1)

Suppose that Γi
Ti,fi⇒ ∆i is already defined. Then we define eleven finite sequent trees Πj

Sj ,gj⇒ Σj

for j = 1, 2, . . . , 11 successively by the procedure below; and finally we define

(Γi+1
Ti+1,fi+1⇒ ∆i+1) = (Π11

S11,g11⇒ Σ11).

(1) for (heredity)

(Π1
S1,g1⇒ Σ1) =

(Γi
Ti,fi⇒ ∆i) if 〈~ni〉 :Ai 6∈ Γi,

(〈~ni, a1〉 :Ai, 〈~ni, a2〉 :Ai, . . . , 〈~ni, ak〉 :Ai, Γi
Ti,fi⇒ ∆i) if 〈~ni〉 :Ai ∈ Γi,

where {〈~ni, a1〉, 〈~ni, a2〉, . . . , 〈~ni, ak〉} is the set of all the children of 〈~ni〉 in Ti.

(2) for (→ left)

(Π2
S2,g2⇒ Σ2) =


(Π1

S1,g1⇒ Σ1) if 〈~ni〉 :Ai→Bi 6∈ Π1,

(Π1
S1,g1⇒ Σ1, 〈~ni〉 :Ai) if 〈~ni〉 :Ai→Bi ∈ Π1 and

TLJ2 6` (Π1
S1,g1⇒ Σ1, 〈~ni〉 :Ai),

(〈~ni〉 :Bi, Π1
S1,g1⇒ Σ1) otherwise.

(3) for (→ right)

(Π3
S3,g3⇒ Σ3) =

(Π2
S2,g2⇒ Σ2) if 〈~ni〉 :Ai→Bi 6∈ Σ2,

(〈~ni, a〉 :Ai, Π2
S+

2 ,g+
2⇒ Σ2, 〈~ni, a〉 :Bi) if 〈~ni〉 :Ai→Bi ∈ Σ2,

where S+
2 = S2 ∪ {〈~ni, a〉} for some fresh number a, and

g+
2 (〈~m〉) =

{
g2(〈~ni〉) if 〈~m〉 = 〈~ni, a〉,
g2(〈~m〉) otherwise.

(4) for (∧ left)

(Π4
S4,g4⇒ Σ4) =

(Π3
S3,g3⇒ Σ3) if 〈~ni〉 :Ai∧Bi 6∈ Π3,

(〈~ni〉 :Ai, 〈~ni〉 :Bi, Π3
S3,g3⇒ Σ3) if 〈~ni〉 :Ai∧Bi ∈ Π3.
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(5) for (∧ right)

(Π5
S5,g5⇒ Σ5) =


(Π4

S4,g4⇒ Σ4) if 〈~ni〉 :Ai∧Bi 6∈ Σ4,

(Π4
S4,g4⇒ Σ4, 〈~ni〉 :Ai) if 〈~ni〉 :Ai∧Bi ∈ Σ4 and

TLJ2 6` (Π4
S4,g4⇒ Σ4, 〈~ni〉 :Ai),

(Π4
S4,g4⇒ Σ4, 〈~ni〉 :Bi) otherwise.

(6) for (∨ left) Symmetric form of (5).

(7) for (∨ right) Symmetric form of (4).

(8) for (∀ left)

(Π8
S8,g8⇒ Σ8) =

(Π7
S7,g7⇒ Σ7) if 〈~ni〉 :∀xiA

′
i 6∈ Π7 or PP(Bi) 6⊆ g7(〈~ni〉),

(〈~ni〉 :A′
i[xi :=Bi], Π7

S7,g7⇒ Σ7) if 〈~ni〉 :∀xiA
′
i ∈ Π7 and PP(Bi) ⊆ g7(〈~ni〉).

(9) for (∀ right)

(Π9
S9,g9⇒ Σ9) =

(Π8
S8,g8⇒ Σ8) if 〈~ni〉 :∀xiA

′
i 6∈ Σ8,

(Π8
S+

8 ,g+
8⇒ Σ8, 〈~ni, a〉 :A′

i[xi :=p]) if 〈~ni〉 :∀xiA
′
i ∈ Σ8,

where p is a fresh propositional parameter, S+
8 = S8 ∪ {〈~ni, a〉} for some fresh number a,

and

g+
8 (〈~m〉) =

{
g8(〈~ni〉) ∪ {p} if 〈~m〉 = 〈~ni, a〉,
g8(〈~m〉) otherwise.

(10) for (∃ left)

(Π10
S10,g10⇒ Σ10) =

(Π9
S9,g9⇒ Σ9) if 〈~ni〉 :∃xiA

′
i 6∈ Π9,

(〈~ni〉 :A′
i[xi :=p], Π9

S9,g+
9⇒ Σ9) if 〈~ni〉 :∃xiA

′
i ∈ Π9,

where p is a fresh propositional parameter and

g+
9 (〈~m〉) =

{
g9(〈~ni〉) ∪ {p} if 〈~m〉 is equal to or a descendant of 〈~ni〉,
g9(〈~m〉) otherwise.

(11) for (∃ right) Symmetric form of (8).

Now we define the required sequent tree by

(Γ+ T+,f+

⇒ ∆+) =
∪
i∈N

(Γi
Ti,fi⇒ ∆i).

In other words, Γ+ = {(〈~n〉 : A) | (∃i ∈ N)((〈~n〉 : A) ∈ Γi)}, T+ = {〈~n〉 | (∃i ∈ N)(〈~n〉 ∈
Ti)}, f+(〈~n〉) = {p | (∃i ∈ N)(p ∈ fi(〈~n〉)}, and ∆+ = {(〈~n〉 : A) | (∃i ∈ N)((〈~n〉 : A) ∈
∆i)}. By the definition of the above procedure, we have (Π1

S1,g1⇒ Σ1) ⊆ (Π2
S2,g2⇒ Σ2) ⊆ · · · ⊆

(Π11
S11,g11⇒ Σ11), and therefore (Γ

T,f⇒ ∆) = (Γ0
T0,f0⇒ ∆0) ⊆ (Γ1

T1,f1⇒ ∆1) ⊆ · · · ⊆ (Γi
Ti,fi⇒ ∆i) ⊆

· · · . Moreover the TLJ2-unprovability is preserved throughout the procedure; that is, “TLJ2 6`
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(Πi
Si,gi⇒ Σi)” implies “TLJ2 6` (Πi+1

Si+1,gi+1⇒ Σi+1)” for i = 1, 2, . . . , 10, and therefore we have

TLJ2 6` (Γ0
T0,f0⇒ ∆0), TLJ2 6` (Γ1

T1,f1⇒ ∆1), . . . , TLJ2 6` (Γi
Ti,fi⇒ ∆i), . . . . Using these facts,

we can show that Γ+ T+,f+

⇒ ∆+ is saturated, contains Γ
T,f⇒ ∆, and does not contain TLJ2-

axioms. QED

In the following, we fix a sequent tree Γ+ T+,f+

⇒ ∆+ which is saturated and does not contain
TLJ2-axioms. For each closed formula A, we define Left(A) and Right(A), which are subsets
of T+, as follows.

Left(A) = {〈~n〉 ∈ T+ | 〈~n〉 :A ∈ Γ+}.
Right(A) = {〈~n〉 ∈ T+ | 〈~n〉 :A 6∈ ∆+}.

We say that s subset α of T+ is approximated by A if the following two conditions hold.

(1) α ∈ UP(T+,¹).

(2) Left(A) ⊆ α ⊆ Right(A).

Note that the second condition is equivalent to

(∀〈~n〉 ∈ T+)
[
(〈~n〉 :A ∈ Γ+ =⇒ 〈~n〉 ∈ α) and (〈~n〉 :A ∈ ∆+ =⇒ 〈~n〉 6∈ α)

]
. (9)

Lemma 16 For any closed formula A, we have Left(A) ⊆ Right(A), and Left(A) is approxi-
mated by A.

Proof By the fact that Γ+ T+,f+

⇒ ∆+ does not contain TLJ2-axioms and the condition (hered-

ity) of saturatedness of Γ+ T+,f+

⇒ ∆+. QED

Using Γ+ T+,f+

⇒ ∆+, we define a Kripke model M+ = 〈W,R,D, I〉 as follows.

W = T+.

R = ¹.

D〈~n〉 = {α ⊆ T+ | there is a closed formula A such that PP(A) ⊆ f+(〈~n〉) and α is
approximated by A }.

Ip = Left(p), for p ∈ PropPara.

We can easily verify that M+ is indeed a Kripke model: W is not empty because it contains 〈〉;
R is reflexive and transitive; D(〈~n〉) is not empty because it contains ∅ (∵ ∅ is approximated by
the formula ⊥); if 〈~n〉R〈~n′〉 then D(〈~n〉) ⊆ D(〈~n′〉) (∵ f+(〈~n〉) ⊆ f+(〈~n′〉)); and Ip = Left(p) ∈
UP(T+,¹) (cf. Lemma 16).

Lemma 17 Let M+ be the Kripke model defined above, A be a formula, x1, x2, . . . , xk be mu-
tually distinct propositional variables such that FV(A) ⊆ {x1, x2, . . . , xk}, X1, X2, . . . , Xk be
closed formulas, and α1, α2, . . . , αk be elements of UP(T+,¹). If αi is approximated by Xi

for any i, then [[A[x1 := α1][x2 := α2] · · · [xk := αk]]]M+ is approximated by the closed formula
A[x1 :=X1][x2 :=X2] · · · [xk :=Xk].

Proof We write [θ] and [θ] to denote respectively the successive substitutions “[x1 :=α1][x2 :=
α2] · · · [xk :=αk]” and “[x1 :=X1][x2 :=X2] · · · [xk :=Xk]”. We prove(

〈~n〉 :A[θ] ∈ Γ+ =⇒ M+, 〈~n〉 |= A[θ]
)

and
(
〈~n〉 :A[θ] ∈ ∆+ =⇒ M+, 〈~n〉 6|= A[θ]

)
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(cf. the condition (9)) for any 〈~n〉 ∈ T+, any [θ], and any [θ]. The proof is done by induction
on the complexity of A.

(Case 1: A = p ∈ PropPara) In this case, A[θ] = A[θ] = p, and [[p]]M+ (= Left(p)) is
approximated by p (∵ Lemma 16).

(Case 2: A = xi) Trivial, because αi is approximated by Xi.

(Case 3: A = ⊥) Trivial, because Γ+ T+,f+

⇒ ∆+ does not contain TLJ2-axioms.
In the following, (heredity), (→ left), . . . , (∃ right) will mean those conditions of saturated-

ness of Γ+ T+,f+

⇒ ∆+.
(Case 4: A = B→C)

〈~n〉 : (B→C)[θ] ∈ Γ+ =⇒ 〈~m〉 : (B[θ])→(C[θ]) ∈ Γ+, for any 〈~m〉 such that 〈~n〉R〈~m〉
(∵ heredity)

=⇒ 〈~m〉 : B[θ] ∈ ∆+ or 〈~m〉 : C[θ] ∈ Γ+, for any 〈~m〉 such that
〈~n〉R〈~m〉 (∵ → left)

=⇒ 〈~m〉 6|= B[θ] or 〈~m〉 |= C[θ], for any 〈~m〉 such that 〈~n〉R〈~m〉
(∵ ind.hyp.)

=⇒ 〈~n〉 |= (B→C)[θ].

〈~n〉 : (B→C)[θ] ∈ ∆+ =⇒ 〈~n, a〉 :B[θ] ∈ Γ+ and 〈~n, a〉 :C[θ] ∈ ∆+, for some child 〈~n, a〉
of 〈~n〉 (∵ → right)

=⇒ 〈~n, a〉 |= B[θ] and 〈~n, a〉 6|= C[θ], for some 〈~n, a〉 such that
〈~n〉R〈~n, a〉 (∵ ind.hyp.)

=⇒ 〈~n〉 6|= (B→C)[θ].

(Case 5: A = B∧C)

〈~n〉 : (B∧C)[θ] ∈ Γ+ =⇒ 〈~n〉 :B[θ] ∈ Γ+ and 〈~n〉 :C[θ] ∈ Γ+ (∵ ∧ left)

=⇒ 〈~n〉 |= B[θ] and 〈~n〉 |= C[θ] (∵ ind.hyp.)

=⇒ 〈~n〉 |= (B∧C)[θ].

〈~n〉 : (B∧C)[θ] ∈ ∆+ =⇒ 〈~n〉 :B[θ] ∈ ∆+ or 〈~n〉 :C[θ] ∈ ∆+ (∵ ∧ right)

=⇒ 〈~n〉 6|= B[θ] or 〈~n〉 6|= C[θ] (∵ ind.hyp.)

=⇒ 〈~n〉 6|= (B∧C)[θ].

(Case 6: A = B∨C) Similar to Case 5.

In the following, we assume that x 6= xi for all i. (The proof for the case of x = xi is similar.)

(Case 7: A = ∀xB)

〈~n〉 : (∀xB)[θ] ∈ Γ+ =⇒ 〈~n〉 :∀x(B[θ]) ∈ Γ+

=⇒ if 〈~n〉R〈~m〉, then 〈~m〉 :∀x(B[θ]) ∈ Γ+, for any node 〈~m〉, (∵
heredity)

=⇒ if 〈~n〉R〈~m〉 and PP(C) ⊆ f+(〈~m〉), then 〈~m〉 :B[θ][x :=C] ∈
Γ+, for any node 〈~m〉 and any closed formula C (∵ ∀ left)

=⇒ if 〈~n〉R〈~m〉 and γ ∈ D〈~m〉, then there exists a closed formula
C such that γ is approximated by C, PP(C) ⊆ f+(〈~m〉),
and 〈~m〉 :B[θ][x :=C] ∈ Γ+, for any node 〈~m〉 and any set γ
(∵ definition of D〈~m〉)
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=⇒ if 〈~n〉R〈~m〉 and γ ∈ D〈~m〉, then 〈~m〉 |= B[θ][x := γ], for any
node 〈~m〉 and any set γ (∵ ind.hyp.)

=⇒ 〈~n〉 |= ∀x(B[θ])

=⇒ 〈~n〉 |= (∀xB)[θ].

〈~n〉 : (∀xB)[θ] ∈ ∆+ =⇒ 〈~n〉 :∀x(B[θ]) ∈ ∆+

=⇒ 〈~n, a〉 : B[θ][x :=C] ∈ ∆+ for some child 〈~n, a〉 of 〈~n〉 and
some closed formula C such that PP(C) ⊆ f+(〈~n, a〉) (∵ ∀
right)

=⇒ 〈~n, a〉 6|= B[θ][x :=Left(C)] (∵ Lemma 16 and ind.hyp.)

=⇒ 〈~n〉 6|= ∀x(B[θ]) (∵ Left(C) ∈ D〈~n,a〉)

=⇒ 〈~n〉 6|= (∀xB)[θ].

(Case 8: A = ∃xB)

〈~n〉 : (∃xB)[θ] ∈ Γ+ =⇒ 〈~n〉 :∃x(B[θ]) ∈ Γ+

=⇒ 〈~n〉 :B[θ][x :=C] ∈ Γ+ for some closed formula C such that
PP(C) ⊆ f+(〈~n〉) (∵ ∃ left)

=⇒ 〈~n〉 |= B[θ][x :=Left(C)] (∵ Lemma 16 and ind.hyp.)

=⇒ 〈~n〉 |= ∃x(B[θ]) (∵ Left(C) ∈ D〈~n〉)

=⇒ 〈~n〉 |= (∃xB)[θ].

〈~n〉 : (∃xB)[θ] ∈ ∆+ =⇒ 〈~n〉 :∃x(B[θ]) ∈ ∆+

=⇒ if PP(C) ⊆ f+(〈~n〉), then 〈~n〉 : B[θ][x :=C] ∈ ∆+, for any
closed formula C (∵ ∃ right)

=⇒ if γ ∈ D〈~n〉, then there exists a closed formula C such
that γ is approximated by C, PP(C) ⊆ f+(〈~n〉), and
〈~n〉 :B[θ][x :=C] ∈ ∆+, for any set γ (∵ definition of D〈~n〉)

=⇒ if γ ∈ D〈~n〉, then 〈~n〉 6|= B[θ][x := γ], for any set γ (∵
ind.hyp.)

=⇒ 〈~n〉 6|= ∃x(B[θ])

=⇒ 〈~n〉 6|= (∃xB)[θ].

QED

Theorem 18 The above Kripke model M+ is full.

Proof Take an arbitrary closed M+-formula A and an arbitrary node 〈~n〉 ∈ W. Assume that
A is interpretable at 〈~n〉. Our goal is to show [[A]]M+ ∈ D〈~n〉.

Let β1, β2, . . . , βm be all the names in A and p1, p2, . . . , pk be all the propositional parameters
in A. Using fresh propositional variables x1, x2, . . . , xm and y1, y2, . . . , yk, we define a closed
formula A0 by replacing each occurrences of βi and pi respectively with xi and yj . As a result,
A0 contains no propositional parameters, and

A = A0[x1 :=β1][x2 :=β2] · · · [xm :=βm][y1 :=p1][y2 :=p2] · · · [yk :=pk]. (10)
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Now we have βi ∈ D〈~n〉 for all i and [[pj ]]M+ ∈ D〈~n〉 for all j, by the assumption (A is inter-
pretable at 〈~n〉). Therefore, by the definition of D, there are closed formulas B1, B2, . . . , Bm and
C1, C2, . . . , Ck such that PP(Bi) ⊆ f+(〈~n〉), βi is approximated by Bi, PP(Cj) ⊆ f+(〈~n〉), and
[[pj ]]M+ is approximated by Cj , for all i, j. Then, by Lemma 17, the set[[

A0[x1 :=β1][x2 :=β2] · · · [xm :=βm][y1 :=[[p1]]M+ ][y2 :=[[p2]]M+ ] · · · [yk :=[[pk]]M+ ]
]]
M+

(11)

is approximated by the closed formula

A0[x1 :=B1][x2 :=B2] · · · [xm :=Bm][y1 :=C1][y2 :=C2] · · · [yk :=Ck]. (12)

By (10) and Lemma 9, the set (11) is equal to [[A]]M+ . On the other hand, the formula (12)
consists of the only propositional parameters in f+(〈~n〉). These implies [[A]]M+ ∈ D〈~n〉 by the
definition of D〈~n〉. QED

Theorem 19 (Completeness Theorem of TLJ2) If a closed formula A is valid in any full

Kripke model, then the sequent tree (
T,f⇒ 〈〉 :A) is provable in TLJ2 where T = {〈〉} and f(〈〉) =

PP(A).

Proof We show the contraposition. Suppose TLJ2 6` (
T,f⇒ 〈〉 :A). By Lemma 15, there is a

saturated sequent tree Γ+ T+,f+

⇒ ∆+ which does not contain TLJ2-axioms and 〈〉 : A ∈ ∆+.
Using this, we define a Kripke model M+ as above, which is full by Theorem 18. Lemma 17
says that [[A]]M+ is approximated by A; therefore M+, 〈〉 6|= A (see the condition (9)). QED

8 Sequent tree calculus for constant domains

In this section, we modify the arguments of the previous section for constant domain case and
its disjunction free version.

We say that a sequent tree Γ
T,f⇒ ∆ is constant domain if f is a constant function (that is,

f(〈~n〉) = f(〈~m〉) for all 〈~n〉, 〈~m〉). We introduce a system TLJ2CD, which deduces constant
domain finite sequent trees. Axioms of TLJ2CD are the restriction of TLJ2-axioms to constant
domain sequent trees. Inference rules of TLJ2CD are obtained from the rules of TLJ2 by
replacing (∀ right) and (∃ left) as follows.

Γ
T,f+

⇒ ∆, 〈~n〉 :A[x :=p]

Γ
T,f⇒ ∆, 〈~n〉 :∀xA

(∀ rightcd)(†)
〈~n〉 :A[x :=p], Γ

T,f+

⇒ ∆

〈~n〉 :∃xA, Γ
T,f⇒ ∆

(∃ left)(†)

(†) Proviso: p is a propositional parameter (called eigenvariable) which does not occur
in the lower sequent tree, and f+ and f satisfy the equation f+(〈~m〉) = f(〈~m〉)∪{p}
for all ~m.

We modify the notion of saturatedness by replacing the condition (∀ right) as follows.

(∀ right) If 〈~n〉 : ∀xA′ ∈ ∆, then there is a closed formula C such that PP(C) ⊆ f(〈~n〉) and
〈~n〉 :A′[x :=C] ∈ ∆.
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This modified version of saturatedness is called “cd-saturated” (“cd” for “constant domain”).
Then all the arguments of Lemmas 15, 16, 17, and Theorem 18 can be modified by replacing

the terms “TLJ2”, “sequent tree”, and ”saturated” by “TLJ2CD”, “constant domain sequent
tree”, and ”cd-saturated”, respectively. In these modified arguments, the Kripke model M+ =
〈W,R,D, C〉 becomes constant domain because D〈~n〉 = {α ⊆ T+ | there is a closed formula
A such that PP(A) ⊆ f+(〈~n〉) and α is approximated by A } and f+ is a constant function.
Consequently we have:

Theorem 20 (Completeness Theorem of TLJ2CD) If a closed formula A is valid in any

constant domain full Kripke model, then the sequent tree (
T,f⇒ 〈〉 :A) is provable in TLJ2CD

where T = {〈〉} and f(〈〉) = PP(A).

Moreover we modify the above arguments for disjunction free formulas.
TLJ2CDdf is obtained from TLJ2CD by imposing restriction that all the sequent tree

are disjunction free. Of course, the rules (∨ left) and (∨ right) are deleted. We define the
notion of “cddf-saturated” (“cddf” for “constant domain disjunction free”) by deleting the two
conditions (∨ left) and (∨ right) from the definition of cd-saturatedness. Then all the argu-
ments of Lemmas 15, 16, 17, and Theorem 18 can be modified by replacing the terms “for-
mula”, “full” “TLJ2”, “sequent tree”, and ”saturated” by “disjunction free formula”, “df-full”,
“TLJ2CDdf”, “constant domain disjunction free sequent tree”, and ”cddf-saturated”, respec-
tively. Consequently we have:

Theorem 21 (Completeness Theorem of TLJ2CDdf) If a disjunction free closed formula

A is valid in any constant domain df-full Kripke model, then the sequent tree (
T,f⇒ 〈〉 :A) is

provable in TLJ2CDdf where T = {〈〉} and f(〈〉) = PP(A).

9 From sequent trees to formulas

In this section, we show the following:

If a sequent tree Γ
T,f⇒ ∆ is provable in TLJ2 (or TLJ2CD), then a formula #(Γ

T,f⇒ ∆),

which is a translation of Γ
T,f⇒ ∆, is provable in LJ2 (or LJ2CD, respectively).

As a corollary, we have the following.

If a sequent tree
{〈〉},f⇒ 〈〉 :A is provable in TLJ2 (or TLJ2CD), then the formula A

is provable in LJ2 (or LJ2CD, respectively).

Before defining the translation #(Γ
T,f⇒ ∆), we make a remake on formulas. As usual, if

Γ is a finite set of formulas, then
∧

Γ and
∨

Γ will denotes respectively the conjunction and
disjunction of all the formulas in Γ . There are many formulas that are regarded as

∧
Γ (or

∨
Γ )

for a fixed Γ . For example, if Γ = {A, x, y}, then both ((x∧y)∧A) and ((A∧x)∧(A∧y)) are
∧

Γ .
We do not have to distinguish these formulas because they are equivalent with respect to LJ2-
provability. For example, two conditions LJ2 `

(
∀x∃y(((x∧y)∧A)→B),Π ⇒ Σ

)
and LJ2 `(

∀x∃y(((A∧x)∧(A∧y))→B),Π ⇒ Σ
)

are equivalent because the former implies the latter:

....
(p∧q)∧A ⇒ (A∧p)∧(A∧q)....

∀x∃y(((A∧x)∧(A∧y))→B) ⇒ ∀x∃y(((x∧y)∧A)→B)
(the former)

∀x∃y(((x∧y)∧A)→B),Π ⇒ Σ

∀x∃y(((A∧x)∧(A∧y))→B),Π ⇒ Σ
(cut)
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· · · ⇒ · · · {~p, ~q1}

S1

· · · ⇒ · · · {~p, ~q2}

S2

· · · · · · ⇒ · · · {~p, ~qk}

Sk

Π ⇒ Σ {~p}

Figure 7: Sequent tree S.

and the converse is similarly proved.
Moreover, if x1, x2, . . . , xk are mutually distinct propositional variables, and if ~x = {x1, x2, . . . ,

xk}, then we write
−→
∀x to represent ∀x1∀x2 · · · ∀xk. In this case, we do not have to mind the

order of xi because, for example, ∀x∀y∀z(· · · ) and ∀z∀y∀x(· · · ) are equivalent with respect to
LJ2-provability.

Now the formula #(Γ
T,f⇒ ∆) for sequent tree Γ

T,f⇒ ∆ is defined by induction on the height
of the tree T , as follows.

In general, a subtree S of a finite sequent tree is illustrated as Figure 7, where S1, S2, . . . ,
Sk are subtrees of S (k ≥ 0), and {~p} and {~p, ~qi} (where {~p} ∩ {~qi} = ∅) are respectively the
sets of propositional parameters that are associated with the nodes. For each i ∈ {1, 2, . . . , k},
we define a number ni by ni = |{~qi}| and we define a set ~xi of ni fresh propositional variables by
~xi = {xi

1, x
i
2, . . . , x

i
ni
}. Suppose that the formulas #(S1), #(S2), . . . , #(Sk), for subtrees S1,

S2, . . . , Sk, are already defined. Then the formula #(S) is defined as follows.

#(S) =

{
(
∧

Π)→
(
(
∨

Σ)∨A1∨A2∨ · · · ∨Ak

)
if Π is not empty,

(
∨

Σ)∨A1∨A2∨ · · · ∨Ak if Π is empty

where
Ai =

−→
∀xi

(
#(Si)[〈~qi〉 :=〈~xi〉]

)
(i = 1, 2, . . . , k)

and [〈~qi〉 :=〈~xi〉] is the substitution to replace each occurrence of qi
j by xi

j for j = 1, 2, . . . , ni.
For example, if S is the sequent tree in Figure 2, then #(S) is the formula

(p∧q) →
[
¬p∨¬q ∨ ¬¬p ∨ ∀x

(
(x→p) →

(
q ∨ (¬¬q→p∧q) ∨ ∀y(y∨p)

))]
.

Lemma 22 Let

S
T (ρ)

or
S1 S2

T (ρ)

be an instance of an inference rule of TLJ2 in which the root node is operated. If ρ is a
one-premise rule except (∃ left), then we have LJ2 ` (#(S) ⇒ #(T )). If ρ is a two-premises
rule, then we have LJ2 ` (#(S1), #(S2) ⇒ #(T )). If ρ = (∃ left), then we have LJ2 `
(∀y(#(S)[p :=y]) ⇒ #(T )) where p is the eigenvariable and y is a fresh propositional variable.

Proof
(Case 1: ρ = (heredity)) Suppose S =

(
〈a〉 :A, Γ

T,f⇒ ∆
)
, T =

(
〈〉 :A, Γ

T,f⇒ ∆
)
, #(S) =(

C→(D∨
−→
∀x((A∧E)→F )

)
, and #(T ) =

(
(A∧C)→(D∨

−→
∀x(E→F )

)
, where

−→
∀x = (∀x1∀x2 · · · ∀xk)
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and x1, x2, . . . xk 6∈ FV(A). Then a proof sketch for LJ2 ` (#(S) ⇒ #(T )) is as follows.
....

(A∧E′)→F ′, A ⇒ E′→F ′

−→
∀x((A∧E)→F ), A ⇒

−→
∀x(E→F )

D∨
−→
∀x((A∧E)→F ), A ⇒ D∨

−→
∀x(E→F )

C→(D∨
−→
∀x((A∧E)→F )), A,C ⇒ D∨

−→
∀x(E→F )

C→(D∨
−→
∀x((A∧E)→F )) ⇒ (A∧C)→(D∨

−→
∀x(E→F ))

(Case 2: ρ = (→ left)) Suppose S1 =
(
Γ

T,f⇒ ∆, 〈〉 :A
)
, S2 =

(
〈〉 :B, Γ

T,f⇒ ∆
)
, T =(

〈〉 :A→B, Γ
T,f⇒ ∆

)
, #(S1) = C→(D∨A), #(S2) = (B∧C)→D, and #(T ) = ((A→B)∧C)→D.

Then a proof sketch for LJ2 ` (#(S1), #(S2) ⇒ #(T )) is as follows.
....

(B∧C)→D,B,C ⇒ D

A, (B∧C)→D,A→B,C ⇒ D

D∨A, (B∧C)→D,A→B,C ⇒ D

C→(D∨A), (B∧C)→D,A→B,C ⇒ D

C→(D∨A), (B∧C)→D ⇒ ((A→B)∧C)→D

(Case 3: ρ = (→ right)) In this case, two formulas #(S) and #(T ) are equivalent.
(Case 4: ρ = (∧ left)) In this case, two formulas #(S) and #(T ) are equivalent.

(Case 5: ρ = (∧ right)) Suppose S1 =
(
Γ

T,f⇒ ∆, 〈〉 :A
)
, S2 =

(
Γ

T,f⇒ ∆, 〈〉 :B
)
, T =(

Γ
T,f⇒ ∆, 〈〉 :A∧B

)
, #(S1) = C→(D∨A), #(S2) = C→(D∨B), and #(T ) = C→(D∨(A∧B)).

Then a proof sketch for LJ2 ` (#(S1), #(S2) ⇒ #(T )) is as follows.
....

A,B ⇒ D∨(A∧B)
D∨A,D∨B ⇒ D∨(A∧B)

C→(D∨A), C→(D∨B), C ⇒ D∨(A∧B)
C→(D∨A), C→(D∨B) ⇒ C→(D∨(A∧B))

(Case 6: ρ = (∨ left)) Suppose S1 =
(
〈〉 :A, Γ

T,f⇒ ∆
)
, S2 =

(
〈〉 :B, Γ

T,f⇒ ∆
)
, T =(

〈〉 :A∨B, Γ
T,f⇒ ∆

)
, #(S1) = (A∧C)→D, #(S2) = (B∧C)→D, and #(T ) = ((A∨B)∧C)→D.

Then a proof sketch for LJ2 ` (#(S1), #(S2) ⇒ #(T )) is as follows.
....

(A∧C)→D,A,C ⇒ D

....
(B∧C)→D,B,C ⇒ D

(A∧C)→D, (B∧C)→D,A∨B,C ⇒ D

(A∧C)→D, (B∧C)→D ⇒ ((A∨B)∧C)→D

(Case 7: ρ = (∨ right)) In this case, two formulas #(S) and #(T ) are equivalent.

(Case 8: ρ = (∀ left)) Suppose S =
(
〈〉 :A[x :=B], Γ

T,f⇒ ∆
)
, T =

(
〈〉 :∀xA, Γ

T,f⇒ ∆
)
,

#(S) =
(
(A[x :=B]∧C)→D

)
, and #(T ) =

(
((∀xA)∧C)→D

)
. Then a proof sketch for LJ2 `

(#(S) ⇒ #(T )) is as follows.
....

∀xA, C ⇒ A[x :=B]∧C

(A[x :=B]∧C)→D, ∀xA, C ⇒ D

(A[x :=B]∧C)→D ⇒ ((∀xA)∧C)→D
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(Case 9: ρ = (∀ right)) In this case, two formulas #(S) and #(T ) are equivalent.

(Case 10: ρ = (∃ left)) Suppose S = (〈〉 :A[x :=p], Γ
T,f+

⇒ ∆), T = (〈〉 :∃xA, Γ
T,f⇒ ∆),

#(S) =
(
(A[x :=p]∧C)→D

)
, and #(T ) =

(
((∃xA)∧C)→D

)
, where p 6∈ PP(((∃xA)∧C)→D)

and ((∃xA)∧C)→D is a closed formula. Then a proof sketch for LJ2 ` (∀y(#(S)[p :=y]) ⇒ #(T ))
is as follows (y is a fresh propositional variable).

....
(A[x :=p]∧C)→D,A[x :=p], C ⇒ D

∀y((A[x :=y]∧C)→D),∃xA,C ⇒ D

∀y((A[x :=y]∧C)→D) ⇒ ((∃xA)∧C)→D

(Case 11: ρ = (∃ right)) Suppose S = (Γ
T,f+

⇒ ∆, 〈〉 :A[x :=B]), T = (Γ
T,f⇒ ∆, 〈〉 :∃xA),

#(S) =
(
C→(D∨A[x :=B])

)
, and #(T ) =

(
C→(D∨∃xA)

)
. Then a proof sketch for LJ2 `

(#(S) ⇒ #(T )) is as follows.

....
D∨A[x :=B] ⇒ D∨∃xA

C→(D∨A[x :=B]), C ⇒ D∨∃xA

C→(D∨A[x :=B]) ⇒ C→(D∨∃xA)

QED

Lemma 23 Let

S
T (ρ)

or
S1 S2

T (ρ)

be an instance of an inference rule of TLJ2 in which the root node is not the operated node. If
ρ is a one-premise rule, then we have LJ2 ` (#(S) ⇒ #(T )). If ρ is a two-premises rule, then
we have LJ2 ` (#(S1), #(S2) ⇒ #(T )).

Proof We give a proof for the case that ρ is a two-premise rule and 〈a〉 (a child of the root
node) is the operated node. The other cases can be similarly proved by the repetition of the
following argument.

Let S〈a〉
1 , S〈a〉

2 and T 〈a〉 be the subtrees of respectively S1, S2 and T whose root is 〈a〉. Then
the figure

S〈a〉
1 S〈a〉

2

T 〈a〉 (ρ)

is an instance of the inference rule ρ in which the root node is operated. Therefore we can apply
the previous Lemma 22 and we have (†) LJ2 ` (#(S〈a〉

1 ), #(S〈a〉
2 ) ⇒ #(T 〈a〉)).

By the definition of the translation #(), there are closed formulas C and D, propositional
parameters ~p (= 〈p1, p2, . . . , pk〉), propositional variables ~x (= 〈x1, x2, . . . , xk〉) (k ≥ 0) such
that #(S1) = C→

(
D∨

−→
∀x

(
#(S〈a〉

1 )[〈~p〉 := 〈~x〉]
))

, #(S2) = C→
(
D∨

−→
∀x

(
#(S〈a〉

2 )[〈~p〉 := 〈~x〉]
))

,
and #(T ) = C→

(
D∨

−→
∀x

(
#(T 〈a〉)[〈~p〉 := 〈~x〉]

))
. Define the formulas A1, A2, and B by A1 =

#(S〈a〉
1 )[〈~p〉 := 〈~x〉], A2 = #(S〈a〉

2 )[〈~p〉 := 〈~x〉], and B = #(T 〈a〉)[〈~p〉 := 〈~x〉]. Then a proof sketch
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for LJ2 ` (#(S1), #(S2) ⇒ #(T )) is as follows.

.... (†)
A1[〈~x〉 :=〈~p〉], A2[〈~x〉 :=〈~p〉] ⇒ B[〈~x〉 :=〈~p〉]

−→
∀xA1,

−→
∀xA2 ⇒

−→
∀xB

D∨
−→
∀xA1, D∨

−→
∀xA2 ⇒ D∨

−→
∀xB

C→(D∨
−→
∀xA1), C→(D∨

−→
∀xA2), C ⇒ D∨

−→
∀xB

C→(D∨
−→
∀xA1), C→(D∨

−→
∀xA2) ⇒ C→(D∨

−→
∀xB)

Note that, for example, A1[〈~x〉 := 〈~p〉] = #(S〈a〉
1 ) because the propositional variables ~x do not

occur elsewhere. QED

Theorem 24 Let T be a sequent tree. If TLJ2 ` T , then LJ2 ` ⇒ #(T ).

Proof By induction on the proof of T in TLJ2. If T is an axiom, it is easy to get LJ2 `
⇒ #(T ). For the other cases, suppose that T is inferred by a rule

S
T (ρ)

or
S1 S2

T .
(ρ)

If ρ = (∃ left) and the root node is operated, then ⇒ #(T ) is provable in LJ2 as follows.

ind. hyp.
⇒ #(S)

⇒ ∀y(#(S)[p :=y])
(∀ right) Lemma 22

∀y(#(S)[p :=y]) ⇒ #(T )
⇒ #(T )

(cut)

where p is the eigenvariable. In the other cases, we have

ind. hyp.
⇒ #(S)

Lemma 22 or 23
#(S) ⇒ #(T )

⇒ #(T )
(cut)

or

ind. hyp.
⇒ #(S2)

ind. hyp.
⇒ #(S1)

Lemma 22 or 23
#(S1), #(S2) ⇒ #(T )

#(S2) ⇒ #(T )
(cut)

⇒ #(T ).
(cut)

QED

Corollary 25 Let A be a closed formula. If TLJ2 ` {〈〉},f⇒ 〈〉 :A (where f(〈〉) ⊇ PP(A)), then
LJ2 ` ⇒ A.

Proof By the previous theorem, since #(
{〈〉},f⇒ 〈〉 :A) = A. QED

In the rest of this section, we modify the above argument for the constant domain case.
Recall that Γ

T,f⇒ ∆ is a constant domain sequent tree if and only if f is a constant function.
If the sequent tree in Figure 7 is constant domain, then all of ~q1, ~q2, . . . , ~qk are empty, and the
translation #(S) is simply defined as follows.

#(S) =

{
(
∧

Π)→
(
(
∨

Σ)∨#(S1)∨#(S2)∨ · · · ∨#(Sk)
)

if Π is not empty,
(
∨

Σ)∨#(S1)∨#(S2)∨ · · · ∨#(Sk) if Π is empty.
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Lemma 26 Let

S
T (ρ)

or
S1 S2

T (ρ)

be an instance of an inference rule of TLJ2CD in which the root node is operated. If ρ is a
one-premise rule except (∀ right) and (∃ left), then we have LJ2CD ` (#(S) ⇒ #(T )). If ρ is
a two-premises rule, then we have LJ2CD ` (#(S1), #(S2) ⇒ #(T )). If ρ is (∀ right) or (∃
left), then we have LJ2CD ` (∀y(#(S)[p :=y]) ⇒ #(T )) where p is the eigenvariable and y is
a fresh propositional variable.

Proof The proof is same as Lemma 22 except the case that ρ is (∀ right). In that case,

suppose S = (Γ
T,f+

⇒ ∆, 〈〉 :A[x :=p]), T = (Γ
T,f⇒ ∆, 〈〉 :∀xA), #(S) =

(
C→(D∨A[x :=p])

)
,

and #(T ) =
(
C→(D∨∀xA)

)
, where p 6∈ PP(C→(D∨∀xA)) and C→(D∨∀xA) is a closed for-

mula. Then a proof sketch for LJ2CD ` (∀y(#(S)[p :=y]) ⇒ #(T )) is as follows (y is a fresh
propositional variable).

A[x :=y][y :=p] ⇒ A[x :=p]
D∨∀yA[x :=y] ⇒ D∨∀xA

∀y(D∨A[x :=y]) ⇒ D∨∀xA
(∀-∨ left) in Lemma 1

C→∀y(D∨A[x :=y]) ⇒ C→(D∨∀xA)
∀y(C→(D∨A[x :=y])) ⇒ C→(D∨∀xA)

(∀-→ left) in Lemma 1

QED

Lemma 27 Let

S
T (ρ)

or
S1 S2

T (ρ)

be an instance of an inference rule of TLJ2CD. The same claims as Lemma 26 hold even if
the root node is not the operated node.

Proof The proof is similar to Lemma 23, using Lemma 1. QED

Theorem 28 Let T be a constant domain sequent tree. If TLJ2CD ` T , then LJ2CD `
⇒ #(T ).

Proof Similar to Theorem 24, using Lemmas 26 and 27. QED

Corollary 29 Let A be a closed formula. If TLJ2CD ` {〈〉},f⇒ 〈〉 :A (where f(〈〉) ⊇ PP(A)),
then LJ2CD ` ⇒ A.

10 Disjunction free case

We define a sequent calculus LJ2df
cutfree to be the systems obtained from LJ2df by deleting (cut)

rule. In this section we show the following:

(TLJ2CDdf ` {〈〉},f⇒ 〈〉 :A) =⇒ (LJ2df
cutfree ` ⇒ A).
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Compared with the previous Corollary 29, this is somewhat surprising because “LJ2df
cutfree `”

means not only needlessness of cut rule but also needlessness of constant domain axiom.
For a sequent tree Γ

T,f⇒ ∆ and a label 〈~n〉 ∈ T , we define a set Γ〈~n〉↓ of formulas by

Γ〈~n〉↓ = {A | 〈m〉 :A ∈ Γ for some label 〈~m〉 ∈ T such that 〈~m〉 ¹ 〈~n〉}.

For example, if Γ
T,f⇒ ∆ is the sequent tree of Figure 2, then Γ〈2,1〉↓ = {¬¬q, r→p, p, q} and

Γ〈2〉↓ = {r→p, p, q}.

Lemma 30 If a (constant domain) disjunction free sequent tree Γ
T,f⇒ ∆ is provable in TLJ2CDdf ,

then there exists a labelled formula 〈~n〉 : A ∈ ∆ such that the sequent Γ〈~n〉↓ ⇒ A is provable in
LJ2df

cutfree.

Proof By induction on the TLJ2CDdf -proof of Γ
T,f⇒ ∆.

(Case 1) Γ
T,f⇒ ∆ is an axiom 〈~n〉 :A,Π

T,f⇒ Σ, 〈~n〉 :A or 〈~n〉 :⊥,Π
T,f⇒ Σ, 〈~n〉 :A. In this case,

〈~n〉 : A ∈ ∆ is the required labelled formula because both A, Π〈~n〉↓ ⇒ A and ⊥,Π〈~n〉↓ ⇒ A are
provable in LJ2df

cutfree by axiom and the weakening rule.

(Case 2) Γ
T,f⇒ ∆ is inferred by (heredity) as

〈~m, a〉 :B, Π
T,f⇒ ∆

〈~m〉 :B, Π
T,f⇒ ∆

(heredity)

By the induction hypothesis, there is a labelled formula 〈~n〉 :A ∈ ∆ such that

LJ2df
cutfree ` (〈~m, a〉 :B,Π)〈~n〉↓ ⇒ A. (13)

If 〈~m, a〉 ¹ 〈~n〉, then condition (13) is equal to

LJ2df
cutfree ` (〈~m〉 :B,Π)〈~n〉↓ ⇒ A, (14)

which is the required condition. If 〈~m, a〉 6¹ 〈~n〉, then condition (13) is equal to

LJ2df
cutfree ` Π〈~n〉↓ ⇒ A. (15)

This (15) implies (14) using the weakening rule (if 〈~m〉 ¹ 〈~n〉), or (15) = (14) (if 〈~m〉 6¹ 〈~n〉).
(Case 3) Γ

T,f⇒ ∆ is inferred by (→ left) as

Π
T,f⇒ ∆, 〈~m〉 :B 〈~m〉 :C, Π

T,f⇒ ∆

〈~m〉 :B→C, Π
T,f⇒ ∆

(→ left)

By the induction hypotheses, there is a labelled formula 〈 ~n1〉 :A1 ∈ (∆, 〈~m〉 :B) such that

LJ2df
cutfree ` Π〈 ~n1〉↓ ⇒ A1, (16)

and there is a labelled formula 〈 ~n2〉 :A2 ∈ ∆ such that

LJ2df
cutfree ` (〈~m〉 :C,Π)〈 ~n2〉↓ ⇒ A2. (17)

(Subcase 3-1) (〈 ~n1〉 :A1) 6= (〈~m〉 :B) or 〈~m〉 6¹ 〈 ~n2〉. In this case, (16) and (17) imply

LJ2df
cutfree ` Π〈~n〉↓ ⇒ A (18)
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for some 〈~n〉 :A ∈ ∆ (where (〈~n〉 :A) = (〈 ~n1〉 :A1) or (〈 ~n2〉 :A2)), and (18) implies the required
condition LJ2df

cutfree ` 〈~m〉 :B→C,Π〈~n〉↓ ⇒ A.
(Subcase 3-2) (〈 ~n1〉 : A1) = (〈~m〉 : B) and 〈~m〉 ¹ 〈 ~n2〉. In this case, (16) and (17) are

equal to LJ2df
cutfree ` Π〈~m〉↓ ⇒ B and LJ2df

cutfree ` C,Π〈 ~n2〉↓ ⇒ A2. Then, by (→ left), we have
LJ2df

cutfree ` B→C,Π〈 ~n2〉↓ ⇒ A2, which is the required condition (note that Π〈~m〉↓ ⊆ Π〈 ~n2〉↓).

(Case 4) Γ
T,f⇒ ∆ is inferred by (→ right) as

〈~m, a〉 :B, Γ
T+,f+

⇒ Σ, 〈~m, a〉 :C

Γ
T,f⇒ Σ, 〈~m〉 :B→C

(→ right)

where 〈~m, a〉 is a leaf of T+ and no other formula than B,C has the label 〈~m, a〉. By the
induction hypothesis, there is a labelled formula 〈~n〉 :A ∈ (Σ, 〈~m, a〉 :C) such that

LJ2df
cutfree ` (〈~m, a〉 :B,Γ )〈~n〉↓ ⇒ A. (19)

(Subcase 4-1) (〈~n〉 : A) 6= (〈~m, a〉 : C). In this case, (19) is equal to LJ2df
cutfree ` Γ〈~n〉↓ ⇒ A,

which is the required condition (note that 〈~m, a〉 6¹ 〈~n〉).
(Subcase 4-2) (〈~n〉 :A) = (〈~m, a〉 :C). In this case, (19) is equal to LJ2df

cutfree ` B,Γ〈~m〉↓ ⇒ C

because no other formula than B,C has the label 〈~m, a〉. Then, by (→ right), we have LJ2df
cutfree `

Γ〈~m〉↓ ⇒ B→C, which is the required condition.

(Case 5) Γ
T,f⇒ ∆ is inferred by (∧ left) as

〈~m〉 :B, 〈~m〉 :C, Π
T,f⇒ ∆

〈~m〉 :B∧C, Π
T,f⇒ ∆

(∧ left)

By the induction hypothesis, there is a labelled formula 〈~n〉 :A ∈ ∆ such that

LJ2df
cutfree ` (〈~m〉 :B, 〈~m〉 :C,Π)〈~n〉↓ ⇒ A. (20)

(Subcase 5-1) 〈~m〉 6¹ 〈~n〉. In this case, (20) is equal to LJ2df
cutfree ` Π〈~n〉↓ ⇒ A, which is the

required condition.
(Subcase 5-2) 〈~m〉 ¹ 〈~n〉. In this case, (20) is equal to LJ2df

cutfree ` B,C,Π〈~n〉↓ ⇒ A. Then,
by (∧ left), we have LJ2df

cutfree ` B∧C,Π〈~n〉↓ ⇒ A, which is the required condition.

(Case 6) Γ
T,f⇒ ∆ is inferred by (∧ right) as

Γ
T,f⇒ Σ, 〈~m〉 :B Γ

T,f⇒ Σ, 〈~m〉 :C

Γ
T,f⇒ Σ, 〈~m〉 :B∧C

(∧ right)

By the induction hypotheses, there are labelled formulas 〈 ~n1〉 :A1 ∈ (Σ, 〈~m〉 :B) and 〈 ~n2〉 :A2 ∈
(Σ, 〈~m〉 :C) such that

LJ2df
cutfree ` Γ〈 ~n1〉↓ ⇒ A1 and LJ2df

cutfree ` Γ〈 ~n2〉↓ ⇒ A2. (21)

(Subcase 6-1) (〈 ~n1〉 :A1) 6= (〈~m〉 :B) or (〈 ~n2〉 :A2) 6= (〈~m〉 :C). In this case, (21) implies that
LJ2df

cutfree ` Γ〈~n〉↓ ⇒ A for some 〈n〉 :A ∈ Σ. This is the required condition.
(Subcase 6-2) (〈 ~n1〉 : A1) = (〈~m〉 : B) and (〈 ~n2〉 : A2) = (〈~m〉 : C). In this case, (21)

is equal to LJ2df
cutfree ` Γ〈~m〉↓ ⇒ B and LJ2df

cutfree ` Γ〈~m〉↓ ⇒ C. Then, by (∧ left), we have
LJ2df

cutfree ` Γ〈~m〉↓ ⇒ B∧C, which is the required condition.
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(Case 7) Γ
T,f⇒ ∆ is inferred by (∀ left) as

〈~m〉 :B[x :=C], Π
T,f⇒ ∆

〈~m〉 :∀xB, Π
T,f⇒ ∆

(∀ left)

By the induction hypothesis, there is a labelled formula 〈~n〉 :A ∈ ∆ such that

LJ2df
cutfree ` (〈~m〉 :B[x :=C], Π)〈~n〉↓ ⇒ A. (22)

(Subcase 7-1) 〈~m〉 6¹ 〈~n〉. In this case, (22) is equal to LJ2df
cutfree ` Π〈~n〉↓ ⇒ A, which is the

required condition.
(Subcase 7-2) 〈~m〉 ¹ 〈~n〉. In this case, (22) is equal to LJ2df

cutfree ` B[x :=C],Π〈~n〉↓ ⇒ A.
Then, by (∀ left), we have LJ2df

cutfree ` ∀xB,Π〈~n〉↓ ⇒ A, which is the required condition.

(Case 8) Γ
T,f⇒ ∆ is inferred by (∀ rightcd) as

Γ
T,f+

⇒ Σ, 〈~m〉 :B[x :=p]

Γ
T,f⇒ Σ, 〈~m〉 :∀xB

(∀ rightcd)

where p does not occur in the lower sequent tree. By the induction hypothesis, there is a labelled
formula 〈~n〉 :A ∈ (Σ, 〈~m〉 :B[x :=p]) such that

LJ2df
cutfree ` Γ〈~n〉↓ ⇒ A. (23)

(Subcase 8-1) (〈~n〉 :A) 6= (〈~m〉 :B[x :=p]). In this case, (23) is the required condition.
(Subcase 8-2) (〈~n〉 : A) = (〈~m〉 : B[x :=p]). In this case, (23) is equal to LJ2df

cutfree `
Γ〈~m〉↓ ⇒ B[x :=p]. Then, by (∀ right), we have LJ2df

cutfree ` Π〈~m〉↓ ⇒ ∀xB, which is the required
condition.

The other cases — (∃ left) and (∃ right) — are similar to Cases 7 and 8. QED

Corollary 31 Let A be a disjunction free closed formula. If the sequent tree
{〈〉},f⇒ 〈〉 :A (where

f(〈〉) ⊇ PP(A)) is provable in TLJ2CDdf , then the sequent ⇒ A is provable in LJ2df
cutfree.

Proof By the previous Lemma 30. QED

(Remark) If we try to prove Lemma 30 for TLJ2CD instead of TLJ2CDdf , we get into

difficulties in the following case: Γ
T,f⇒ ∆ is inferred by (∨ left) as

〈~m〉 :B, Π
T,f⇒ ∆ 〈~m〉 :C, Π

T,f⇒ ∆

〈~m〉 :B∨C, Π
T,f⇒ ∆

(∨ left)

By the induction hypotheses, there are labelled formulas 〈 ~n1〉 : A1 ∈ ∆ and 〈 ~n2〉 : A2 ∈ ∆ such
that

LJ2df
cutfree ` (〈~m〉 :B,Π)〈 ~n1〉↓ ⇒ A1 and LJ2df

cutfree ` (〈~m〉 :C,Π)〈 ~n2〉↓ ⇒ A2

However, if (〈 ~n1〉 : A1) 6= (〈 ~n2〉 : A2), 〈~m〉 ¹ 〈 ~n1〉 and 〈~m〉 ¹ 〈 ~n2〉, then neither LJ2df
cutfree `

B∨C,Π〈 ~n1〉↓ ⇒ A1 nor LJ2df
cutfree ` B∨C,Π〈 ~n2〉↓ ⇒ A2 can be shown.
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11 Conclusions and future study

Combining all the results of Sections 2–10, we obtain main theorems of this paper.

Theorem 32 (Completeness of LJ2) For any closed formula A, the following four condi-
tions are equivalent.

(1) LJ2 ` ⇒ A.

(2) LJ2df ` ⇒ Adf .

(3) TLJ2 ` T,f⇒ 〈〉 :A where T = {〈〉} and f(〈〉) = PP(A).

(4) A is valid in any full Kripke model.

Proof By Theorems 6, 11, 19, and Corollary 25. QED

Theorem 33 (Completeness of LJ2CD) For any closed formula A, the following three con-
ditions are equivalent.

(1) LJ2CD ` ⇒ A.

(2) TLJ2CD ` T,f⇒ 〈〉 :A where T = {〈〉} and f(〈〉) = PP(A).

(3) A is valid in any constant domain full Kripke model.

Proof By Theorems 14, 20, and Corollary 29. QED

Theorem 34 (Completeness and cut-elimination for disjunction free formulas) For any
disjunction free closed formula A, the following seven conditions are equivalent.

(1) LJ2 ` ⇒ A.

(2) LJ2df ` ⇒ A.

(3) LJ2df
cutfree ` ⇒ A.

(4) TLJ2CDdf ` T,f⇒ 〈〉 :A where T = {〈〉} and f(〈〉) = PP(A).

(5) A is valid in any full Kripke model.

(6) A is valid in any df-full Kripke model.

(7) A is valid in any constant domain df-full Kripke model.

Proof (1 ⇔ 2) is shown by Corollary 7. (1 ⇔ 5) is shown by Theorem 32. (2 ⇒ 6) is shown
by Theorem 12. (6 ⇒ 5), (6 ⇒ 7), and (3 ⇒ 2) are trivial. (7 ⇒ 4) is shown by Theorem 21.
(4 ⇒ 3) is shown by Corollary 31. QED

In the rest of this paper, we give some remarks and problems for future study.
An essentially equivalent result to (2 ⇒ 7 ⇒ 4 ⇒ 3) of Theorem 34 (in other words,

semantical cut-elimination for LJ2df) was already proved by Prawitz [4] by using Beth model
instead of Kripke model. However I do not know whether this results can be extended to the
language with disjunction. So we give:
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Problem 1 Does the cut-elimination theorem hold for LJ2?

Let C = ∀x
(
p∨((p→x)∨¬x)

)
→

(
p∨∀x((p→x)∨¬x)

)
. In Section 5, we show an example of

full Kripke model in which the formula C is not valid. Then, by Theorems 32 and 34, there is
a constant domain df-full Kripke model in which Cdf is not valid.

Problem 2 Find a simple constant domain df-full Kripke model in which the formula Cdf is
not valid.

Note that C is valid in any constant domain full Kripke model (because C is an instance of
constant domain axiom). A solution to this problem should be a good example to show the
distinction between A∨B and ∀x((A→x)→(B→x)→x).

In the study of nonclassical logics, there have been a lot of results on propositional and
predicate intermediate (between classical and intuitionistic) logics. However, I do not know sub-
stantial studies on second order propositional intermediate logics. (Theorem 33 — completeness
of the constant domain intermediate logic — is the only result on second order propositional
intermediate logics I know.) So we give:

Problem 3 Develop studies on second order propositional intermediate logics.
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