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Abstract

In [2], there is an error in the proof of the undecidability of group announcement logic (GAL).
The purpose of this note is to correct this error. We show that when there are two or more
agents in the language, the satisfiability problem is undecidable for GAL.

1 Introduction

Public announcement logic (PAL) is one of the well-known logics in the study of dynamic epistemic
logic (see [3]). There are several logics with quantification over the announcement of PAL, for exam-
ple, arbitrary public announcement logic (APAL), group announcement logic (GAL) and coalition
announcement logic (CAL). Especially, it is shown that the satisfiability problem of GAL of 5 agents
or more is undecidable in [1].

In “The Undecidability of Quantified Announcements” [2] T. Ågotnes, H. van Ditmarsch, and
T. French demonstrate that the satisfiability problem of multiple agents APAL, GAL, and CAL is
undecidable. However, there is an error in the proof of the undecidability of GAL. The purpose of
this note is to correct this error. We show that when there are two or more agents in the language, the
satisfiability problem is undecidable for GAL. In [2], it is mentioned that the satisfiability problem
of GAL is decidable when the language contains only one agent. This and our result imply that two
is the minimal number of agents that makes the problem undecidable.

In Section 2 we give a counterexample to a lemma in [2]. In Section 3 we give a new theorem on
confluence. In Section 4 we show that the tiling problem is reducible to the satisfiability problem of
GAL. All notations and definitions in this paper follow [2].

2 Counterexample of [2, Lemma 5.2]

The following formulas and a proposition are given in [2].

cga(X) =X→ [s] (Ks(r→Ke(l→Ks(u→Ke(d

→Ks(l→Ke(r→Ks(d→Ke(u→K̂sX))))))))).

cycga = cga(♥) ∧ cga(♣) ∧ cga(♦) ∧ cga(♠).
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tga(X, Y, Z) = X→
∧


[e] (Ks(r→Ke(l→K̂sY )))

[e] (Ks(u→Ke(d→K̂sZ)))

[e] (Ks(l→Ke(r→K̂sY )))

[e] (Ks(d→Ke(u→K̂sZ)))

 .
ckga = tga(♥,♣,♠) ∧ tga(♣,♥,♦) ∧ tga(♦,♠,♣) ∧ tga(♠,♦,♥).

CBga = KeKs(local ∧ cycga ∧ ckga).

Proposition 2.1 ([2, Lemma 5.3(2)]). Suppose that M = (S,∼, V ), s ∈ S and Ms |= CBga ∧ card.
Then:

• For all n ∈ N, for all t ∈ sR(s; r?; e; l?; s;u?; e; d?; s; l?; e; r?; s; d?; e;u?), there is some u ∼s t
such that u ∈ ‖s‖Π

n .

We show a counterexample to Proposition 2.1. Let Γ = ((c0, c0, c0, c0), (c1, c0, c1, c0)). We call c0

white, and c1 red. The structure of the counterexample is represented in Figure 1. It is made up
of two checkerboards, one is formed only white squares, and the other is formed only red and white
squares. The central nodes are labeled c0. Note that agent e is not able to distinguish between t1 and
t′2. We confirm that the constructed model satisfies Ms |= CBga∧card. In particular, Ms |= cga(♥) is
supported by the following discussion. Let ψ′ ∈ Lel be arbitrary, ψ = Ksψ

′ where Ms |= ψ. Mt1 |= ψ
since t1 ∼s s. There are three cases to consider:

Case 1: Mt′2
6|= ψ holds. Therefore {t ∈ Sψ | t ∼e t1 ∧ t ∈ V (l)} is empty or {t2}.

Case 2: Mt′2
|= ψ and there exists v ∈ {t′3, t′4, . . . , t′7, t′} such that Mv 6|= ψ. Suppose Mt′4

6|= ψ.
{t ∈ Sψ | t ∼e t

′
3 ∧ t ∈ V (d)} is empty. The others are virtually identical to the v = t′4 case.

Case 3: Mt′2
|= ψ and for all v ∈ {t′3, t′4, . . . , t′7, t′}, Mv |= ψ. Since ψ = Ksψ

′, we have Mψ
t′ |= K̂s♥.

Based on the above, for all ψ ∈ Ls
el,

Mψ
s |= Ks(r→Ke(l→Ks(u→Ke(d→

Ks(l→Ke(r→Ks(d→Ke(u→K̂s♥)))))))).

Therefore Ms |= cga(♥). Moreover for all u ∼s t
′ such that Ms |= Ks(u→ c0) and Mu 6|= Ks(u→ c0).

We apply [2, Lemma 4.4] to s and u, so u 6∈ ‖s‖2.

3 Introducing confluence instead of cycles

The purpose of this section is to show an alternative lemma to [2, Lemma 5.2]. In [2, Section 5.2],
the formula cycga which means cycle was given. In this section, instead of it, we give a formula conga

that means confluence. For an arbitrary square, conga expresses the relationship between the up of
right of it and the right of up of it. The properties are formalized as follows:

c∗ga(X, Y ) = X→ [s](K̂s(u ∧ K̂e(d ∧ K̂s(r ∧KeKs¬Y )))→
Ks(r→Ke(l→Ks(u→Ke(d→Ks¬Y ))))).

conga = c∗ga(♥,♦) ∧ c∗ga(♦,♥) ∧ c∗ga(♠,♣) ∧ c∗ga(♣,♠).

CB∗ga = KeKs(local ∧ conga ∧ ckga).
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Figure 1: A counterexample model

Lemma 3.1 (cf. [2, Lemma 5.3(1)]). Suppose that M = (S,∼, V ), s ∈ S, and Ms |= KeKs(local ∧
ckga)∧ card. Let U=sR(s; r?; e; l?; s)∪ sR(s;u?; e; d?; s)∪ sR(s; l?; e; r?; s)∪ sR(s; d?; e;u?; s). Then:

• For all n ∈ N, for all t′ ∈ U , there is some t ∼s t
′, and some u ∼e s such that u ∈ ‖t‖Π

n .

Proof. We follow the proof of [2, Lemma 5.3(1)] except that ψ is not l ∨ r ∨ Ke(
∨
a≤m φa) but

Ke(l ∨ r ∨
∨
a≤m φa).

Lemma 3.2. Suppose that M = (S,∼, V ), s ∈ S and Ms |= CB∗ga∧card. Let U1 = sR(s;u?; e; d?; s; r?),
U2 = sR(s; r?; e; l?; s;u?; e; d?). Then:

• For all n ∈ N, for all t′1 ∈ U1, for all t′2 ∈ U2, there is some t1 ∈ t′1R(e; l?) and some t2 ∼s t
′
2

such that t1 ∈ ‖t2‖Π
n .

Proof. We consider any two chains for worlds

s ∼s w1 ∼e w2 ∼s t
′
1 ∼e t1,

s ∼s v1 ∼e v2 ∼s v3 ∼e t
′
2.

Where w1, v3 ∈ V (u), t′1, v2 ∈ V (l), w2, t
′
2 ∈ V (d), w3, v1 ∈ V (r). Each world in these chains satisfies

the formula local, since Lemma 3.1. (Detailed proof is similar to the proof described in [2, Lemma
5.2(2)].)

Let us suppose that Ms |= ♥. The construction we have applied is depicted in Figure 2. Suppose,
for contradiction, that there is some n ∈ N, some t′1 ∈ U1, and some t′2 ∈ U2 such that for all
t1 ∈ t′1R(e; l?) and for all t2 ∼s t

′
2, t1 6∈ ‖t2‖Π

n .
From [2, Lemma 4.3] for every n, there exists a set of formulas, φ0, . . . , φm such that

(1) For all u ∼s t
′
2 there exists a ≤ m such that Mu |= φa.
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Figure 2: A representation of Lemma 3.2

(2) For all a ≤ m, there exists u ∼s t
′
2 such that Mu |= φa.

(3) For all a ≤ m, for all u ∼s t
′
2 where Mu |= φa, for all t ∈ S, Mt |= φa if and only if t ∈ ‖u‖n.

It follows that Mt′2
|= Ks

∨
a≤m φa and for all t1 ∈ t′1R(e; l?), Mt1 |= ¬

∨
a≤m φa by assumption.

Let ψ = Ks(K̂s♦→
∨
a≤m φa). Then:

(a) For all s′ ∈ {s, v1, v2, v3, w1, w2, t
′
1},Ms′ |= ψ. Since Ms′ |= local, we have Ms′ |= Ks¬K̂s♦.

(b) Mt′2
|= ψ holds, since Mt′2

|= Ks

∨
a≤m φa.

(c) There exists t∗2 ∼s t
′
2 such that Mt∗2

|= ♦, because Mt′2
|= local. Mt∗2

|= Ks

∨
a≤m φa, since

Mt′2
|= Ks

∨
a≤m φa.

(d) For all t1 ∈ t′1R(e; l), ifMt1 |= ψ, thenMt1 |= Ks¬♦. By assumption, we haveMt1 |= ¬
∨
a≤m φa.

If Mt1 |= ψ, then Mt1 |= Ks¬♦.

(a),(b),(c),(d) and for all t1 ∼e t
′
1 where t1 6∈ V (l), we have Mt1 |= Ks¬♦. Therefore

Mψ
s |= K̂s(u ∧ K̂e(d ∧ K̂s(r ∧KeKs¬♦))) ∧ K̂s(r ∧ K̂e(l ∧ K̂s(u ∧ K̂e(d ∧ K̂s♦)))).

This is inconsistent with Ms |= conga.
It can be shown similarly for cases other than Ms |= ♥.

Corollary 3.3 (cf. [2, Lemma 6.1]). Suppose that M = (S,∼, V ), s ∈ S and Ms |= CB∗ga∧ card. Let
U=sR(s; r?; e; l?; s) ∪ sR(s;u?; e; d?; s) ∪ sR(s; l?; e; r?; s) ∪ sR(s; d?; e;u?; s). Then, for all s′ ∼e s:

1. For all n ∈ N, for all t′ ∈ U , there is some t ∼s t
′, and some u ∼e s such that u ∈ ‖t‖Π

n .

2. For all n ∈ N, for all t′1 ∈ s′R(s;u?; e; d?; s; r?), for all t2 ∈ s′R(s; r?; e; l?; s;u?; e; d?; s), there
is some t1 ∈ t′1R(e; l?; s) such that t1 ∈ ‖t2‖Π

n .
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Proof. 1. Follows from Lemma 3.1.

2. We note that Ms′ |= CB∗ga∧card, because s′ ∼e s. Let t′2 ∈ t2R(s; d)∩s′R(s; r?; e; l?; s;u?e; d?).
There is some t∗1 ∈ t′1R(e; l?), some t∗2 ∼s t

′
2 such that t∗1 ∈ ‖t∗2‖n+1, since Lemma 3.2. Since

t2 ∼s t
′
2 ∼s t

∗
2, t2 ∼s t

∗
2 holds. There is some t1 ∼s t

∗
1 such that t1 ∈ ‖t2‖n, since the definition

of bisimulation.

4 Undecidability

As with [2, Section 6], we show the undecidability of the satisfiability problem of GAL. We note that
Corollary 3.3(2) is weaker than [2, Theorem 6.1(2)]. Therefore, proof of Lemma 4.1 is different from
[2, Lemma 6.2] in some situations. (Especially for the case of i 6= 0 ∧ j 6= 0.)

Lemma 4.1 (cf. [2, Lemma 6.2]). Suppose Ms |= SATΓ ∧ CB∗ga ∧ ♥. Then Γ can tile the plane.

Proof. Given the model M = (S,∼, V ), and the state s. Let Pn = {(i, j) ∈ N× N | i + j ≤ n}. We
show that there exists a map τn : Pn→S for each n ∈ N such that:

• τn(0, 0) = s.

• For all i, j ∈ N, if i+ j ≤ n, then τn(i, j) ∼e s.

• For all i, j ∈ N, if n > i + j + 1, then there exists t ∈ τn(i, j)R(s; r?; e; l?; s) such that
τn(i+ 1, j) ∈ ‖t‖3(n−(i+j+1)).

• For all i, j ∈ N, if n > i + j + 1, then there exists t ∈ τn(i, j)R(s;u?; e; d?; s) such that
τn(i, j + 1) ∈ ‖t‖3(n−(i+j+1)).

We show the existence of τn for each n by induction. Let τn(0, 0) = s. For arbitrary (i, j) ∈ N×N,
we assume that τn(i′, j′) has been defined for all (i′, j′) where i′ + j′ < i + j. Let m = n − (i + j).
There are three inductive cases to consider:

1. i = 0: Detailed proof is equivalent to the proof described in [2, Lemma 6.2].

2. j = 0: Detailed proof is equivalent to the proof described in [2, Lemma 6.2].

3. i 6= 0 ∧ j 6= 0: We suppose that τn(i− 1, j − 1) = s′, τn(i, j − 1) = su, τn(i− 1, j) = sr.

By the inductive hypothesis we have that

(a) There exists t1 ∈ s′R(s;u?; e; d?; s) such that t1 ∈ ‖su‖3m+3.

(b) There exists t2 ∈ s′R(s; r?; e; l?; s) such that t2 ∈ ‖sr‖3m+3.

The structure of this case is pictured in Figure 3. Since sr ∼e s and Corollary 3.3(1), there is
some w ∈ srR(s; d?; e; d?; s) and some s∗ ∼e sr such that w ∈ ‖s∗‖3m. Since Ms′ |= KeKslocal
and Corollary 3.3(1), for all w∗ ∈ srR(s;u?), Mw∗ |= local. Therefore srR(s;u?; e; d?; s)
is not empty. It is similarly shown that other worlds are not empty. Let τn(i, j) = s∗.
s∗ ∼e su ∼e s holds, hence s∗ ∼e s holds. Since the definition of bisimulation, there is some
w′ ∈ t2R(s;u?; e; d?; s) such that w ∈ ‖w2‖3m. We note w′ ∈ s′R(s; r?; e; l?; s;u?; e; d?; s). By
Corollary 3.3(2), for all t′1 ∈ t1R(s; r?), there is some v′ ∈ t′1R(e; l?; s) such that v′ ∈ ‖w′‖3m.
Since t1 ∈ ‖su‖3m+3, we can choose v to satisfy v′ ∈ ‖v‖3m. By the transitivity of bisimulation,
s∗ ∈ ‖v‖3m holds.
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Figure 3: A representation of the final case of Lemma 4.1

Therefore, we can suppose the existence of the function τn for all n ∈ N. We are able to show
that Γ can tile the plane, in the same way as [2, Theorem 6.2].

Lemma 4.2 (cf. [2, Lemma 6.3]). Suppose that Γ can tile the plane. Then there exists model
M = (S,∼, V ) and some state s ∈ S such that

Ms |= SATΓ ∧ CB∗ga ∧ ♥.

(SATΓ is defined in [2, Section 5].)

Proof. Suppose that Γ is possible to tile the plane, there is a function λ : N × N→Γ such that for
all (i, j) ∈ N×N. We build the model M = (S,∼, V ) similarly to [2, Lemma 6.3]. (Let ∼s= Rs and
∼e= Re.)

In particular, we confirm Ms |= KeKsconga. (Other formulas follow [2, Lemma 6.3].) Let s =
(0, 0,mid). Then

• Ms |= KeKsconga.
Suppose t = (i, j, k) ∈ S and t ∈ V (♥). We note that {(i+1, j+1,mid)} = tR(s;u?; e; d?; s; r?; e; l?s;♦?)
and {(i+ 1, j + 1,mid)} = tR(s; r?; e; l?; s;u?; e; d?s;♦?). Let ψ (where ψ = Ksψ

′, ψ′ ∈ Lel) is
arbitrary. If Mψ

t |= (K̂s(u∧ K̂e(d∧ K̂s(r∧KeKs¬♦)))), then (i+ 1, j+ 1,mid) 6∈ Sψ. Therefore
Mψ

t |= Ks(r→ Ke(l→ Ks(u→ Ke(d→ Ks¬♦))). Similar arguments can be given for other
directions and suits so we have Mt |= conga. By the arbitrariness of t, Ms |= KeKsconga.

Theorem 4.3 (cf. [2, Lemma 6.4]). The satisfiability problem for GAL is undecidable, provided that
there is more than one agent in the system.

Proof. From Lemma 4.1 and Lemma 4.2, it is shown that the satisfiability problem for GAL is
equivalent to a tiling problem. Therefore, when there are two or more agents in the language, the
satisfiability problem is undecidable for GAL.
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