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Abstract

It is known that the implicational fragment of the relevant logic E is com-
plete with respect to the class of Urquhart’s models, where a model consists
of a semilattice and a set of possible worlds. This paper shows that some
implicational relevant logics, which are obtained from E by adding axioms,
are complete with respect to the class of Urquhart’s models with certain con-
ditions. To show this, we introduce labelled sequent calculi.

1 Introduction

A natural semantic treatment of relevant logics was given by Urquhart [10]. (See
[1], [2] and [4] for information on relevant logics.) Let E be the implicational frag-
ment of the relevant logic E. (In this paper, we treat only “→” (implication) as
a logical symbol; therefore, E/R/S4· · · will denote the implicational fragments of
themselves.) An Urquhart’s model for E (we call it an E-model) consists of two struc-
tures 〈I, ·, e〉 and 〈W,R〉 where the former is an idempotent commutative monoid
(i.e., semilattice with identity e) and the latter is a quasi-ordered set (i.e., R is a
reflexive and transitive relation on W ). The structure 〈I, ·, e〉 is considered to be a
“structure of information”—I is a set of pieces of information, · is a binary operator
which combines two pieces of information, and e is an empty piece of information;
and the structure 〈W,R〉 is, like a Kripke’s model for modal logics, considered to
be a “structure of possible worlds”—W is a set of worlds, and R is an accessibil-
ity relation. The notion “α, x |= A” (a formula A holds according to a piece α of
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information at a world x) is inductively defined by the following.

α, x |= B→C ⇐⇒ ∀β ∈ I, ∀y ∈ W [(xRy) & (β, y |= B) ⇒ (α·β, y |= C)].

We say that a formula A is valid in the model if e, x |= A for any x ∈ W . The
completeness theorem, which was shown in [10] (a proof appeared in [2]), claims
that a formula A is provable in E if and only if A is valid in any E-model.

The relevant logic R and the logic S4 of “strict implication” are obtained from
E by adding, respectively, the axiom schemes

C: (A→(B→C))→(B→(A→C)), and

K01:
−→
A→(B→−→A )

where
−→
A is an abbreviation for A1→A2; and the intuitionistic logic Int is obtained

from E by adding both the schemes C and K01 (or, equivalently, Int is obtained from
R by adding the scheme K: A→(B→A)). (See, e.g., [1] and [9] for axiomatizations
of these logics. The name K01 comes from [9], where the superscripts represent
certain restrictions by “over-arrows”.) The completeness theorems for these logics
were shown as follows. We define two conditions on E-models:

(Single World Condition) The set of possible worlds is a singleton.

(Hereditary Condition) If α, x |= A, then α·β, x |= A.

Then, the logic (R / S4 / Int) is complete with respect to the class of E-models
satisfying the condition (Single World / Hereditary / both Single World and Hered-
itary, respectively). That is, for example, a formula A is provable in Int if and only
if A is valid in any E-model that satisfies both the Single World and Hereditary
Conditions.

Moreover, such completeness results were shown for other two relevant logics—
called E5 and RM0 (the names come from [5] and [1]).

The logic E5 is obtained from E by adding the axiom scheme

C001: (A→(B→−→C ))→(B→(A→−→C )).

(In [5] and [10], the axiom schemeB→((B→−→C )→−→C ) was adopted where this scheme
and C001 are mutually inferable over E.) The scheme C001 is an instance of the scheme
C, and therefore E5 is an intermediate logic between E and R. It was shown that the
logic E5 is complete with respect to the class of E-models satisfying the following
condition.

(Single Cluster Condition) The accessibility relation is universal, that
is, xRy for any x, y ∈ W .

Note that this condition is weaker than the Single World Condition.
The logic RM0 is obtained from R by adding the axiom scheme
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M: A→(A→A).

This scheme is an instance of the scheme K, and therefore RM0 is an intermediate
logic between R and Int. It was shown that the logic RM0 is complete with respect
to the class of E-models satisfying both the Single World Condition and the following
condition.

(Mingle Condition) If α, x |= A and β, x |= A, then α·β, x |= A.

Note that the Mingle Condition is weaker than the Hereditary Condition.

Figure 1

E EM# S4

E5 E5M# S5I

R RM0 Int

- -

- -

- -

6 6 6

6 6 6

+M# +K01 (K01)

+C001

+C

Mingle Condition

Hereditary Condition

E-models /
Linear Order E-models

Single Cluster E-models

Single World E-models

To sum up, it has been shown that the six logics E, E5, R, RM0, Int, and
S4, which are located on the edges of the diagram in Figure 1, are complete with
respect to the class of E-models with the additional conditions. (See [2], [5] and [10]
for the proofs.) Then, bringing the diagram to completion is a natural requirement.
In other words, there are two questions: (Q1) Is there an axiom scheme A that
satisfies the following?

• The logic E+A is complete with respect to the class of E-models satisfying
the Mingle Condition.
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• The logic E5+A is complete with respect to the class of E-models satisfying
both the Single Cluster Condition and the Mingle Condition.

• The logic R+A is equivalent to RM0.

(Q2) Is the logic S5I = S4+C001 complete with respect to the class of E-models
satisfying both the Single Cluster Condition and Hereditary Condition? (We will
account for the name S5I later.)

This paper gives positive answers to these questions. (It is somewhat surprising
that such a natural question has been open.) For Q1, the required scheme A is

M#: (
−→
A→B)→(

−→
A→(B→B)),

and the logics E+M# and E5+M# are denoted by EM# and E5M#, respectively.
(Note that M# is an instance of the scheme

K01: (
−→
A→B)→(

−→
A→(C→B))

while this scheme and K01 are mutually inferable over E; see Section 2.) Moreover
we show a strong version of the completeness of E/EM#/S4, which claims that
these logics are complete with respect to the linear order E-models. That is, for
example, a formula A is provable in S4 if and only if A is valid in any E-model
in which the accessibility relation is a linear order and the Hereditary Condition
holds. These complete the diagram in Figure 1, which shows a nice correspondence
between simple axiom schemes and natural conditions on models.

An outline of the proof of the completeness is as follows. For each logic X
= E, EM#, . . . , we introduce two systems GX and LX. The system GX is an
ordinary “sequent calculus”, and it is easy to show that a “sequent” A1, . . . , An 7→ B
is provable in GX if and only if the formula A1→(· · ·→(An→B) · · ·) is provable in
X. The system LX is a “labelled sequent calculus”, that is, a system to treat
“labelled sequents”—sequents consisting of labelled formulas where a label reflects
the structure of E-models. By a standard way, we show that LX is complete with
respect to the class of E-models satisfying the additional conditions for X. In
particular, if a formula A is valid in any E-model of X, then the labelled sequent
“⇒ (∅, 0) :A”, which consists of A and the “empty label” (∅, 0), is provable in LX.
Then, the following claim completes the proof of the completeness.

If the labelled sequent ⇒ (∅, 0) :A is provable in LX, then the unlabelled
sequent 7→ A is provable in GX.

This is proved by showing a stronger claim:

If a labelled sequent S is provable in LX, then an unlabelled sequent T
is provable in GX where T is “extracted” from S in a certain way.
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Since unlabelled sequents have less expressive power than labelled sequents, this
“extraction” is somewhat complicated; and proving this claim is the hardest (and
the most interesting) part of the proof of the completeness theorem. There have
been a lot of studies on labelled sequent calculi (e.g. see [7] and [8]). Among them,
the author thinks, this paper is a good example of an application of labelled sequent
calculi to solve important problems on the logics, which are independent from the
labelled systems.

The completion of the diagram in Figure 1 induces further questions, for which
the author does not have any nontrivial answers now: (1) There are a lot of possible
conditions on E-models. Is there a corresponding axiom scheme for each condition?
For example, if the models lack the condition α·α = α (idempotence), the corre-
sponding logics might be axiomatized by deleting the scheme W: (A→(A→B))→
(A→B). Is this true for each logic in the diagram? (2) Introducing other connectives
(∧, ∨, ¬, . . .) is an important problem. It was shown ([3], [6]) that the logic R→∧∨
with an extra inference rule is complete with respect to the class of models of R in
which ∧ and ∨ are interpreted in a natural way. What happens for the other logics
in the diagram?

If we get acceptable answers for these questions, Urquhart’s semantics will be
a major paradigm of “possible worlds semantics”, while Routley-Meyer’s “ternary
relation semantics” (see, e.g., [2] or [4]) is major now. The diagram in Figure 1 is a
starting point.

We make remarks about the scheme M# and the logic S5I. In literature (see,

e.g., [1] or [4]), the axiom scheme M′:
−→
A→(

−→
A→−→A ) was suggested as a “Mingle for

E”. But the author thinks the scheme M# is the very axiom of “Mingle for E” be-
cause of its completeness with respect to the class of E-models satisfying the Mingle
Condition. (M′ is inferable from M# (by B :=

−→
A ), but the author does not know

whether the converse holds.) The name S5I comes from [8]. In [8], a sequent style
system for S5I was introduced, whereas the Hilbert style axiomatization S4+C001

did not appear. The name S5I reflects the fact that the models of this logic are
considered to be the intuitionistic variants of the models for “S5 strict implication”.
We will discuss this fact in Section 3.

The plan of this paper is as follows. Let X = {E, EM#, S4, E5, E5M#, S5I}
(the six logics in the bottom and the middle rows in Figure 1). In Section 2, we
introduce implicational relevant logics by Hilbert-style axiomatizations; and then we
introduce six Gentzen-style sequent calculi named GX for X ∈ X . In Section 3, we
define the E-models and prove that the Hilbert-style systems are sound with respect
to the class of E-models with the additional conditions. In Section 4, we introduce
labelled sequent calculi named LX for X ∈ X , and prove their completeness with
respect to the class of E-models with the additional conditions. In Section 5, we
show the “extraction” from the labelled sequent calculi LX into the unlabelled
sequent calculi GX. Finally, in Section 6, we state the main results of this paper—
completeness of the six logics in X .
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2 Axiom schemes and sequent calculi

In this section we give Hilbert-style axiomatizations of implicational relevant logics,
and then introduce Gentzen-style sequent calculi called GX for X = E, EM#, S4,
E5, E5M#, and S5I.

This paper treats only the implicational fragments of relevant logics; therefore
formulas are constructed from propositional variables and → (implication). We
assume that the set of propositional variables is countable. A formula is said to
be an implication if it is of the form A1→A2, and said to be atomic if it is not
an implication. We use the metavariables A,B, . . . for formulas; p, q, . . . for atomic
formulas (i.e., propositional variables); and

−→
A,
−→
B . . . for implications. We adopt

the convention of association to the right for omitting parentheses; for example, the
scheme C appearing Section 1 is written as (A→B→C)→B→A→C.

The Hilbert-style system E consists of the following axiom schemes and inference
rule:

B: (B→C)→(A→B)→A→C

C010: (A→−→B→C)→−→B→A→C

I: A→A

W: (A→A→B)→A→B

A A→B
B

(modus ponens)

(The superscript “010” represents certain restrictions corresponding to the “struc-
tural rules” appearing later.) If a formula A is provable in E, we write E ` A. This
notation will be used for other systems; that is, X ` Y will mean the object Y is
provable in the system X .

We define axiom schemes M#, K01, K01, C001, and C as follows:

M#: (
−→
A→B)→−→A→B→B

K01: (
−→
A→B)→−→A→C→B

K01:
−→
A→B→−→A

C001: (A→B→−→C )→B→A→−→C
C: (A→B→C)→B→A→C

Note that M# is an instance of K01, and C010 and C001 are instances of C. Note also
that the schemes K01 and K01 are mutually inferable over E:

[Proof of E+K01 ` K01]:

K01

X→Y

C010

Y→Z
B

(Y→Z)→(X→Y )→X→Z

(X→Y )→X→Z

X→Z
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where X =
−→
A→B, Y = C→−→A→B, and Z =

−→
A→C→B.

[Proof of E+K01 ` K01]:

I−→
A→−→A

K01

(
−→
A→−→A )→−→A→B→−→A
−→
A→B→−→A

Then we define the Hilbert-style systems EM#, S4, E5, E5M#, S5I, R, RM0,
and Int as follows (see Figure 1).

EM#= E+M#.

S4 = EM#+K01 = EM#+K01 = E+K01 = E+K01.

E5 = E+C001.

E5M#= E5+M#= EM#+C001.

S5I = E5M#+K01 = E5M#+K01 = E5+K01 = E5+K01 = S4+C001.

R = E5+C = E+C.

RM0 = R+M#= E5M#+C = EM#+C.

Int = RM0+K01 = RM0+K01 = R+K01 = R+K01 = S5I+C = S4+C.

Remark. The logics RM0 and Int are usually axiomatized as follows.

RM0 = R+M, where M is the scheme A→A→A.

Int = RM0+K = R+K, where K is the scheme A→B→A.

The equivalence between usual and our axiomatizations can be shown by the method
of Theorem 2.3 in [9].

The goal of this paper is to show the completeness of the six logics E, EM#, S4,
E5, E5M#, and S5I. For this purpose, next we introduce sequent calculi.

A Sequent is an expression of the form Γ 7→ A where Γ is a finite (possibly empty)
sequence of formulas and A is a formula. In this section, we use metavariables
Γ,∆, . . . for finite sequences of formulas. (In Sections 4 and 5, these letters may
denote other objects.) The sequent calculi GE, which was called L10

5 in [9], consists
of the following initial sequents and inference rules.

Initial sequents: A 7→ A

Inference rules:
Γ 7→ A ∆,A,Π 7→ B

∆,Γ,Π 7→ B
(cut)

Γ,A,
−→
B ,∆ 7→ C

Γ,
−→
B ,A,∆ 7→ C

(ex010) Γ,A,A,∆ 7→ B
Γ,A,∆ 7→ B

(contraction)
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Γ 7→ A ∆,B,Π 7→ C
∆,A→B,Γ,Π 7→ C

(→left)
Γ,A 7→ B
Γ 7→ A→B

(→right)

The name ex010 represents that it is a restircted version of the usual rule “exchange”.
There are a lot of other restricted structural rules (exchange, contraction, and weak-
ening), and [9] investigated certain properties of them (e.g., the cut-elimination of
GE was proved).

The system GE is a sequent calculus for the logic E. For other logics, we introduce
the following inference rules, which correspond to the axiom schemes M#, K01, and
C001, respectively:

Γ,
−→
A 7→ B

Γ,
−→
A,B 7→ B

(m#)
Γ,
−−−−→
∆ 7→ A

Γ,B,
−−−−→
∆ 7→ A

(we01)

Γ,A,B,
−−−−→
∆ 7→ C

Γ,B,A,
−−−−→
∆ 7→ C

(ex001)

where Π,
−−−−→
Σ 7→ F denotes a sequent Π,Σ 7→ F in which the formula F is an im-

plication or the sequence Σ is nonempty. (In other words, Π,
−−−−→
Σ 7→ F denotes a

sequent Π,E, . . . , En 7→ F (n ≥ 0) where the formula E1→· · ·→En→F is an im-
plication.) Then we define the sequent calculi GEM#, GS4, GE5, GE5M#, and
GS5I as follows.

GEM#= GE+(m#).

GS4= GE+(we01).

GE5= GE+(ex001).

GE5M#= GE+(ex001)+(m#).

GS5I= GE+(ex001)+(we01).

The relationship between these sequent calculi and the Hilbert style systems is stated
as follows. For a sequent Γ 7→ A, we define the formula [Γ 7→ A] by

[Γ 7→ A] = C1→· · ·→Cn→A if Γ = (C, . . . , Cn).
([Γ 7→ A] = A if Γ is empty.)

Theorem 2.1 Let X be one of the six logics E, EM#, S4, E5, E5M#, and S5I.
(1) If X ` A, then GX ` 7→ A. (2) If GX ` Γ 7→ A, then X ` [Γ 7→ A].

Proof By induction on the proofs (see Theorem 2.8 in [9]).

In the rest of this section we show some properties of the sequent calculi, which
will be used later.

8



Lemma 2.2 The rule
Γ 7→ A→B
Γ,A 7→ B

(→right−1)

is derivable in GX, for any sequent calculus GX in the six. That is, for any Γ , A,
and B, there is a derivation from Γ 7→ A→B to Γ,A 7→ B in GX.

Proof Easy, using the cut rule and A→B,A 7→ B.

Let Γ , ∆, and Θ be finite sequences of formulas. If there are sequences Γ, . . . , Γn,
∆, . . . , ∆n such that

Γ = (Γ, Γ, . . . , Γn)

∆ = (∆, ∆, . . . , ∆n)

Θ = (Γ, ∆, Γ, ∆, . . . , Γn, ∆n)

(each Γi and ∆i may be empty), then Θ is said to be a merge of 〈Γ ;∆〉.
Lemma 2.3 The rule

Γ 7→ −→
A ∆,

−→
A,Π 7→ B

Θ,Π 7→ B
(merge cut) where Θ is a merge of 〈Γ ;∆〉

is derivable in GX, for any sequent calculus GX in the six.

(Such inference rules (i.e., rules described by “merge operator”) were investigated
in [1].)

Proof We show

(†) GX ` [Γ 7→ −→
A ], [∆,

−→
A,Π 7→ B], Θ, Π 7→ B

from which the merge cut rule is derivable with (→right) and the cut rule. If Θ is
empty, (†) is shown by

....
[
−→
A,Π 7→ B],

−→
A,Π 7→ B

−→
A, [

−→
A,Π 7→ B], Π 7→ B.

(ex010)

If Θ is not empty, (†) is obtained from the above proof by “adding” the elements of
Θ one after another, using the following inferences:

[Γ ′ 7→A],
−→
Q,Θ′, Π 7→ B

[C, Γ ′ 7→A],
−→
Q,C,Θ′, Π 7→ B,

(to add the element C of Γ )

P, [∆′, A,Π 7→B], Θ′, Π 7→ B

P, [D,∆′, A,Π 7→B], D,Θ′, Π 7→ B
(to add the element D of ∆)

where the latter is done by (→left, together with D 7→ D), and the former is done

by (→left, together with C 7→ C) and (ex010).
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Lemma 2.4 Let X be one of the logics E5, E5M#, and S5I (i.e., the logics with
C001). The following inference rules are derivable in GX, where {Σ} denotes an
arbitrary permutation of the sequence Σ.

Γ 7→ −→
A ∆,B,Π 7→ C

{∆,−→A→B,Γ}, Π 7→ C
(→left+)

Γ 7→ A ∆,
−→
B ,Π 7→ C

{∆,A→−→B ,Γ}, Π 7→ C
(→left+)

Γ 7→ −→
A ∆,

−→
A,Π 7→ C

{∆,Γ}, Π 7→ C
(cut+)

Proof Derivability of (→left+) was shown by Theorem 4.2 in [9]. Derivability of

(cut+) is shown by (→left+) and (cut, together with 7→ −→
A→−→A ).

Lemma 2.5 Let X be one of the logics EM#, S4, E5M#, and S5I (i.e., the logics
with M#). The inference rule

Γ,A,
−−−−→
∆ 7→ B

Γ,A,A,
−−−−→
∆ 7→ B

is derivable in GX.

Proof If X = S4 or S5I, this inference is an instance of (we01). If X = EM# or

E5M#, we have the following, where
−→
C = [∆ 7→ B].

Γ,A,
−−−−→
∆ 7→ B.... (→right)

Γ 7→ A→−→C

−→
C 7→ −→

C−→
C ,
−→
C 7→ −→

C
(m#)

.... (→left) with A 7→ A

A→−→C ,A,A→−→C ,A 7→ −→
C

A→−→C ,A→−→C ,A,A 7→ −→
C

(ex010)

A→−→C ,A,A 7→ −→
C

(contraction)

Γ,A,A, 7→ −→
C

(cut)

.... (→right−1) (Lemma 2.2)
Γ,A,A,∆ 7→ B

3 Models and soundness

In this section we give the definitions of the models, and show the soundness of the
Hilbert-style systems.

A triple M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 is said to be an E-model if it satisfies the
following conditions.
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• 〈I, ·, e〉 is an idempotent commutative monoid (in other words, a semilattice
with identity e); that is, I is a non-empty set, · is a binary operator on I, and
e ∈ I such that (α·β)·γ = α·(β·γ), α·β = β·α, α·α = α, and α·e = α hold for
any α, β, γ ∈ I.

• 〈W,R〉 is a quasi-ordered set; that is, W is a non-empty set and R is a binary
relation on W such that xRx and (xRy & yRz ⇒ xRz) hold for any x, y, z ∈
W .

• V is a subset of I × W × Atom, where Atom is the set of atomic formulas
(propositional variables).

As stated in Section 1, the set I, the element e, the setW , and the relation R are said
to be “set of pieces of information”, “empty piece of information”, “set of possible
worlds”, and “accessibility relation”, respectively. For a piece α of information, a
possible world x, and a formula A, we define a notion

α, x |=M A

(the formula A holds according to the piece α at the world x) inductively as follows.

α, x |=M p ⇐⇒ (α, x, p) ∈ V .

α, x |=M A→B ⇐⇒
∀β ∈ I, ∀y ∈ W [(xRy) & (β, y |=M A) ⇒ (α·β, y |=M B)].

We say that a formula A is valid in the model M if e, x |=M A for any x ∈ W .

We introduce some conditions on an E-model M = 〈〈I, ·, e〉, 〈W,R〉, V 〉. The
following three are conditions on the possible worlds.

(Single World Condition) W is a singleton.

(Single Cluster Condition) xRy holds for any x, y ∈ W .

(Linear Order Condition) For any distinct x, y ∈ W , exactly one of xRy
or yRx holds.

If M satisfies the Single World Condition, then M is said to be a Single World
E-model; and a Single Cluster E-model and a Linear Order E-model are defined
similarly.

The following two are conditions on |= and the operator ·.
(Hereditary Condition) If α, x |= A, then α·β, x |= A, for any α, β ∈ I,
any x ∈ W and any formula A.

(Mingle Condition) If α, x |= A and β, x |= A, then α·β, x |= A, for any
α, β ∈ I, any x ∈ W and any formula A.

We show that these conditions are respectively equivalent to their atomic versions:
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(Atomic Hereditary Condition) If (α, x, p) ∈ V , then (α·β, x, p) ∈ V ,
for any α, β ∈ I, any x ∈ W and any atomic formula p.

(Atomic Mingle Condition) If (α, x, p) ∈ V and (β, x, p) ∈ V , then
(α·β, x, p) ∈ V , for any α, β ∈ I, any x ∈ W and any atomic formula p.

Theorem 3.1
(1) A model satisfies the Hereditary Condition if and only if it satisfies the Atomic
Hereditary Condition.
(2) A model satisfies the Mingle Condition if and only if it satisfies the Atomic
Mingle Condition.

Proof Here we show the if-part of (2). (The other parts are similar or trivial.) Let
M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 be an E-model satisfying the Atomic Mingle Condition.
By induction on the formula A, we show that the following holds for any A:

If α, x |=M A and β, x |=M A, then α·β, x |=M A, for any α, β ∈ I and
any x ∈ W .

If A is atomic, this is just the Atomic Mingle Condition. For an implication A
= B→C, we assume α, x |=M B→C, β, x |=M B→C, xRy, and γ, y |=M B; and
we will show (α·β)·γ, y |=M C. From the assumptions, we have α·γ, y |=M C and
β·γ, y |=M C; then, by the induction hypothesis, we have (α·γ)·(β·γ), y |=M C,

which implies (α·β)·γ, y |=M C because (α·γ)·(β·γ) = (α·β)·γ.

Then we will show the soundness of the Hilbert-style systems introduced in the
previous section.

Lemma 3.2 Let M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 be an E-model. If α, x |=M
−→
A and xRy,

then α, y |=M
−→
A .

Proof Easy, using the transitivity of the accessibility relation.

Lemma 3.3 The validity is preserved by the rule modus ponens. That is, if both
formulas A→B and A are valid in an E-model M , then also B is valid in M .

Proof Easy.

Lemma 3.4 The schemes B, C010, I, and W (the axiom schemes of E) are valid in
any E-model.

Proof Here we show only the validity of the scheme C010. (The other cases are
similar or easy.) We show

e, x0 |=M (A→−→B→C)→−→B→A→C

where M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 is an E-model and x0 ∈ W . Suppose x0Rx and
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(1) α, x |=M A→−→B→C.

Then our goal is to show

(2) α, x |=M
−→
B→A→C.

For (2), we assume

(3-1) xRy, (3-2) β, y |=M
−→
B ,

(4-1) yRz, and (4-2) γ, z |=M A;

and we show (α·β)·γ, z |=M C. By (1), (4-2) and the fact xRz (induced by (3-1),
(4-1) and the transitibity of R), we have

(5) α·γ, z |=M
−→
B→C.

On the other hand, we have

(6) β, z |=M
−→
B

by (3-2), (4-1) and Lemma 3.2. Then we have

(α·β)·γ, z |=M C

by (5), (6) and the facts (α·γ)·β = (α·β)·γ and zRz.

Lemma 3.5 The scheme C001 is vaild in any Single Cluster E-model.

Proof We show
e, x0 |=M (A→B→−→C )→B→A→−→C

where M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 is a Single Cluster E-model and x0 ∈ W . Suppose

(1) α, x |=M A→B→−→C .
Then our goal is to show

(2) α, x |=M B→A→−→C .
(Recall that the relation R is universal.) For (2), we assume

(3) β, y |=M B,

(4) γ, z |=M A;

and we show (α·β)·γ, z |=M
−→
C . By (1), (4) and (3), we have

(6) (α·γ)·β, y |=M
−→
C .

Then we have

13



(α·β)·γ, z |=M
−→
C

by Lemma 3.2 and the fact (α·γ)·β = (α·β)·γ.

Lemma 3.6 The scheme C is vaild in any Single World E-model.

Proof Easy.

Lemma 3.7 The scheme M# is vaild in any E-model that satisfies the Mingle Con-
dition.

Proof We show
e, x0 |=M (

−→
A→B)→−→A→B→B

where M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 is an E-model satisfying the Mingle Condition, and
x0 ∈ W . Suppose x0Rx and

(1) α, x |=M
−→
A→B.

Then our goal is to show

(2) α, x |=M
−→
A→B→B.

For (2), we assume

(3-1) xRy, (3-2) β, y |=M
−→
A ,

(4-1) yRz, and (4-2) γ, z |=M B;

and we show (α·β)·γ, z |=M B. By (3-2), (4-1), and Lemma 3.2, we have

β, z |=M
−→
A ;

and, by (1), (3-1), (4-1) and the transitivily of R, we have

(5) α·β, z |=M B.

Then (4-2), (5) and the Mingle Condition imply

(α·β)·γ, z |=M B.

Lemma 3.8 The scheme K01 is vaild in any E-model that satisfies the Hereditary
Condition.

Proof Easy.
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Theorem 3.9 (Soundness Theorem) The nine logics E, EM#, S4, E5, E5M#,
S5I, R, RM0, and Int are sound with respcet to the class of E-models described in
Figure 1. That is, for example, if EM# ` A, then A is valid in any E-model that
satisfies the Mingle Condition (and of course valid in any Linear Order E-model that
satisfies the Mingle Condition); and if E5M# ` A, then A is valid in any Single
Cluster E-model that satisfies the Mingle Condition.

Proof By Lemmas 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8.

In the rest of this section, we investigate another model for S5I.

A tripple M = 〈〈K,≤〉,W, V 〉 is said to be an S5I-model if 〈K,≤〉 is a quasi-
ordered set, W is a non-empty set, and V is a subset of K ×W × Atom such that

((α, x, p) ∈ V ) & (α ≤ β) ⇒ ((β, x, p) ∈ V )

holds for any α, β ∈ K, any x ∈ W , and any propositional variable p. We define a
notion

α, x |=M A

(α ∈ K, x ∈ W , and A is a formula) inductively as follows.

α, x |=M p ⇐⇒ (α, x, p) ∈ V .

α, x |=M A→B ⇐⇒
∀β ∈ K, ∀y ∈ W [(α ≤ β) & (β, y |=M A) ⇒ (β, y |=M B)].

We say that a formula A is valid in the model M if α, x |=M A for any α ∈ K and
any x ∈ W .

If K is a singleton, thenM is just a usual model for “S5 strict implication”; and if
W is a singleton, then M is just a usual model for intuitionistic logic. Therefore S5I-
models are considered to be intuitionistic variants of models for S5 strict implication.
(This is the reason for the name S5I).

Let M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 be an E-model of S5I—a Single Cluster E-model
satisfying the Hereditary Condition. Then an S5I-model M∗, which are naturally
induced from M , is defined as follows.

M∗ = 〈〈I,≤〉,W, V 〉 where α ≤ β ⇐⇒ ∃γ[β = α·γ].
(It is easy to verify that M∗ satisfy the conditions of S5I-model.) These two models
are equivalent in the following sense:

Theorem 3.10 α, x |=M A if and only if α, x |=M∗ A.

Proof Easy, by induction on A.
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This implies the following: (†) If A is valid in any S5I-model, than A is valid in any
Single Cluster E-model that satisfies the Hereditary Condition. On the other hand,
it is easy to show the soundness: (‡) If S5I ` A, then A is valid in any S5I-model.
By (†), (‡), and Theorem 6.6(completeness of S5I with respect to E-models), we
have the following:

Theorem 3.11 (Completeness Theorem of S5I with respect to S5I-model)
S5I ` A if and only if A is valid in any S5I-model.

Remark “Intuitionistic variants of the models of strict implications” were in-
troduced in [8], where an S5I-model was defined as 〈〈K,≤〉, {Wk | k ∈ K}, V 〉
(Wk ⊆ Wk′ if k ≤ k′). The completeness theorem of S5I also holds for the S5I-
models of this definition. ([8] did not mention the Hilbert-style axiomatization.)

4 Labelled sequent calculi and completeness

In this section we introduce six labelled sequent calculi (i.e., systems which derive
labelled sequents) called LX (X ∈ {E,EM#,S4,E5,E5M#,S5I}). A labelled
sequent consists of labelled formulas where the labels reflect the structure of E-
models. We prove that the system LX is complete with respect to the class of
E-models corresponding to the logic X.

A label is an ordered pair (α, x) where α is a finite set of natural numbers and x
is a rational number. If (α, x) is a label and A is a formula, then the expression

(α, x) :A

is called a labelled formula. In this section, letters Γ,∆, . . . will denote (possibly
infinite) a multiset of labelled formulas; and, for example, (Γ,∆, (α, x) :A, (β, y) :B)
denotes the multiset Γ ∪m∆∪m{(α, x) :A}∪m{(β, y) :B)} where ∪m is the “multiset
union”.

If Γ and ∆ are finite multiset of labelled formulas, then the expression

Γ ⇒ ∆

is called a labelled sequent. Intuitively, a label (α, x) represents a pair of “piece α
of information” and “possible world x” in an E-model M ; and the meaning of a
labelled sequent

(α, x) :A, . . . , (αm, xm) :Am ⇒ (β, y) :B, . . . , (βn, yn) :Bn

is, like the sequent calculus LK for classical logics, the following:

(α, x 6|=M A) or · · · or (αm, xm 6|=M Am) or (β, y |= B) or · · · or
(βn, yn |=M B).
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If Γ is a multiset of labelled formulas, then we define a set NSet(Γ ) of finite sets
of natural numbers and a set Rat(Γ ) of rational numbers as follows.

NSet(Γ ) = {α | there is a labelled formula (α, x) :A in Γ}.
Rat(Γ ) = {x | there is a labelled formula (α, x) :A in Γ}.

That is, NSet(Γ ) (or Rat(Γ )) is the set of first (or second, resp.) elements of the
labels in Γ . Let X be a set of rational numbers and x, y ∈ X . If x < y and if
there is no rational number z in X such that x < z < y, then we say that x is the
predecessor of y in X and that y is the successor of x in X .

We define a labelled sequent calculus LE as follows. Axioms of LE are

Γ, (α, x) :A⇒ (α, x) :A, ∆.

Inference rules of LE are (contraction left/right), (→ label down), (→ left 0/1), (→
right) as follows:

Γ, (α, x) :A, (α, x) :A⇒ ∆

Γ, (α, x) :A⇒ ∆
(contraction left)

Γ ⇒ (α, x) :A, (α, x) :A, ∆

Γ ⇒ (α, x) :A, ∆
(contraction right)

Γ, (α, y) :
−→
A ⇒ ∆

Γ, (α, x) :
−→
A ⇒ ∆

(→ label down) with a condition:

(Label Condition): x, y ∈ Rat(Γ,∆) and x is the predecessor of y in
Rat(Γ,∆).

Γ, (α∪β, x) :B ⇒ ∆

Γ, (α, x) :p→B, (β, x) :p⇒ ∆
(→ left 0)

Γ ⇒ (β, x) :
−→
A, ∆ Γ, (α∪β, x) :B ⇒ ∆

Γ, (α, x) :
−→
A→B ⇒ ∆

(→ left 1)

Γ, ({a}, y) :A⇒ (α∪{a}, y) :B, ∆

Γ ⇒ (α, x) :A→B, ∆
(→ right) with two conditions:

(Label Condition 1): a 6∈ ⋃
NSet(Γ,∆)∪{α} (i.e., a does not appear in

the lower sequent).

(Label Condition 2): x ∈ Rat(Γ,∆), y 6∈ Rat(Γ,∆), and x is the
predecessor of y in Rat(Γ,∆) ∪ {y}.
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Note that the rules

Γ, (α, x) :A, (β, y) :B, ∆⇒ Π

Γ, (β, y) :B, (α, x) :A, ∆⇒ Π
(exchange left)

Γ ⇒ ∆, (α, x) :A, (β, y) :B, Π

Γ ⇒ ∆, (β, y) :B, (α, x) :A, ∆
(exchange right)

are implicitly available because a labelled sequent consists of multisets.
We will show that LE is complete in the sense that LE ` ⇒ (∅, 0) :A if A is

valid in any Linear Order E-model. To show this, first we give some definitions, and
then we prove Lemma 4.1.

If X is a set of finite set of natural numbers, then a set X ∗ is defined by

X ∗ = {α | ∃n ≥ ,∃β, . . . , βn ∈ X [α = ∅ ∪ β ∪ · · · ∪ βn]}.

In other words, X ∗ is the smallest set Y such that X ⊆ Y , ∅ ∈ Y , and Y is closed
under the binary operator ∪. An E-model M = 〈〈I, ·, e〉, 〈W,R〉, V 〉 is said to be a
label model if it satisfies the following conditions.

• I is a set of finite sets of natural numbers such that I∗ = I.

• α·β = α ∪ β.

• e = ∅.
• W is a set of rational numbers.

• xRy ⇐⇒ x ≤ y.

Obviously this is a Liner Order E-model. We say that a labelled formula (α, x) :A
is true (or false) in M if α ∈ I, x ∈ W , and α, x |=M A (or α, x 6|=M A, resp.).

Let Γ and ∆ be multisets of labelled formulas. We say that the pair 〈Γ,∆〉 is
LE-saturated if it satisfies the following four conditions.

(1) If [(α, x) :
−→
A ∈ Γ , x < y, and y ∈ Rat(Γ,∆)], then (α, y) :

−→
A ∈ Γ . (Converse

of iteration of (→ label down))

(2) If [(α, x) : p→B ∈ Γ and (β, x) : p ∈ Γ ], then (α∪β, x) :B ∈ Γ . (Converse of
(→ left 0))

(3) If [(α, x) :
−→
A→B ∈ Γ and β ∈ (NSet(Γ,∆))∗], then [(β, x) :

−→
A ∈ ∆ or

(α∪β, x) :B ∈ Γ ]. (Converse of (→ left 1))

(4) If (α, x) :A→B ∈ ∆, then [({a}, y) :A ∈ Γ and (α∪{a}, y) :B ∈ ∆ for some a
and for some y > x]. (Converse of (→ right))
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Lemma 4.1 Let Γ and ∆ be finite multisets of labelled formulas. If LE 6` Γ ⇒ ∆,
then there exists a label model M such that any labelled formula in Γ is true in M
and any labelled formula in ∆ is false in M .

Proof We call a triple 〈(ϕ, u) : F, ψ, v〉 a seed for saturation where (ϕ, u) : F is a
labelled formula, ψ is a finite set of natural numbers, and v is a rational number.
Since the set of finite sets of natural numbers, the set of rational numbers, and the
set of formulas are countable, we can enumerate all seeds for saturations as

〈(ϕ, u) :F, ψ, v〉, 〈(ϕ, u) :F, ψ, v〉, . . .

so that every seed occurs infinitely often in the enumeration. Using this enumeration,
we define a sequence Γi ⇒ ∆i (i = 0, 1, 2, . . .) of unprovable labelled sequents as
follows.

[Step 0] (Γ ⇒ ∆) = (Γ ⇒ ∆)

[Step k] Suppose that Γk− ⇒ ∆k− is already defined and is not provable
in LE. In the following, we define four unprovable labelled sequents
Π ⇒ Σ, . . . , Π ⇒ Σ (for each i ∈ {1, . . . , 4}, the labelled sequent
Πi ⇒ Σi is constructed to satisfy the condition (i) of LE-saturatedness);
and finally we take Π ⇒ Σ as Γk ⇒ ∆k which is the goal of this step
k.

(1) If [Fk is an implication, (ϕk, uk) :
−→
Fk ∈ Γk−, uk < vk, and vk ∈

Rat(Γk−, ∆k−)], then

(Π ⇒ Σ) = (Γk−, (ϕk, vk) :
−→
Fk ⇒ ∆k−);

and otherwise (Π ⇒ Σ) = (Γk− ⇒ ∆k−). The fact LE 6` Π ⇒ Σ is
guaranteed by the fact LE 6` Γk− ⇒ ∆k− and the rules (→ label down)
and (contraction left).

(2) If [Fk is of the form p→B, (ϕk, uk) : p→B ∈ Π, and (ψk, uk) : p ∈
Π], then

(Π ⇒ Σ) = (Π, (ϕk∪ψk, uk) :B ⇒ Σ);

and otherwise (Π ⇒ Σ) = (Π ⇒ Σ). The fact LE 6` Π ⇒ Σ is
guaranteed by the fact LE 6` Π ⇒ Σ and the rules (→ left 0) and
(contraction left).

(3) If [Fk is of the form
−→
A→B, (ϕk, uk) :

−→
A→B ∈ Π, and ψk ∈

NSet(Π, Σ)
∗], then

(Π ⇒ Σ) =





(Π ⇒ (ψk, uk) :
−→
A, Σ) (if this labelled sequent is

not provable in LE),
(Π, (ϕk∪ψk, uk) :B ⇒ Σ) (otherwise);
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and otherwise (Π ⇒ Σ) = (Π ⇒ Σ). The fact LE 6` Π ⇒ Σ is
guaranteed by the fact LE 6` Π ⇒ Σ and the rules (→ left 1) and
(contraction left).

(4) If [Fk is an implication, say A→B, and (ϕk, uk) : A→B ∈ Σ]
(†),

then we take a natural number a and a rational number y such that

• a 6∈ ⋃
NSet(Π, Σ),

• y 6∈ Rat(Π, Σ), and

• uk is the predecessor of y in Rat(Π, Σ);

and we define

(Π ⇒ Σ) = (Π, ({a}, y) :A⇒ (ϕk∪{a}, y) :B, Σ).

Since the elements of (Π, Σ) is finite, we can take such a and y. If
the condition (†) fails, then (Π ⇒ Σ) = (Π ⇒ Σ). The fact LE 6`
Π ⇒ Σ is guaranteed by the fact LE 6` Π ⇒ Σ and the rules (→
right) and (contraction right).

This completes the construction of the infinite sequence Γi ⇒ ∆i (i = 0, 1, 2, . . .)
such that Γ = Γ ⊆ Γ ⊆ · · ·, and∆ = ∆ ⊆ ∆ ⊆ · · ·. Then we define Γ∞ =

⋃∞
i= Γi

and ∆∞ =
⋃∞

i=∆i, and we show the following: (1) 〈Γ∞, ∆∞〉 is LE-saturated. (2)
Γ∞ ∩∆∞ = ∅.

[Proof of (1)] We show the condition (3) of the definition of LE-saturatedness ((1),
(2) and (4) are similar). Assume that

(i) (α, x) :
−→
A→B ∈ Γ∞, and

(ii) β ∈ (NSet(Γ∞, ∆∞))∗.

By (i), there is a natural number p such that (α, x) :
−→
A→B ∈ Γp; and by (ii)

and the definition of (NSet(Γ∞, ∆∞))∗, there is a natural number q such that β ∈
(NSet(Γq, ∆q))

∗. Since the seed 〈(α, x) :
−→
A→B, β, v〉 (v is arbitrary) occurs infinitely

often in the enumaration, there is a natural number k ≥ p, q that “hits” the above
construction of Π ⇒ Σ; that is, there is a natural number k such that (β, x) :

−→
A ∈

∆k or (α∪β, x) :B ∈ Γk. This means (β, x) :
−→
A ∈ ∆∞ or (α∪β, x) :B ∈ Γ∞.

[Proof of (2)] If there is a labled formula (α, x) : A in Γ∞ ∩ ∆∞, then there is a
natural number k such that (α, x) : A ∈ Γk ∩ ∆k, and this means Γk ⇒ ∆k is an
axiom of LE. This contradicts the fact LE 6` Γk ⇒ ∆k.

Now we define a label model M to be 〈〈I,∪, ∅〉, 〈W,≤〉, V 〉 where
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I = (NSet(Γ∞, ∆∞))∗,

W = Rat(Γ∞, ∆∞),

V = {(α, x, p) | (α, x) :p ∈ Γ∞}.
Then we prove that the following conditions hold for any labelled formula (α, x) :A.

• If (α, x) :A ∈ Γ∞, then it is true in M .

• If (α, x) :A ∈ ∆∞, then it is false in M .

Since Γ ⊆ Γ∞ and ∆ ⊆ ∆∞, this implies that M is the required model. The above
claim is proved by induction on the complexity of the formula A. Here we show two
cases. (The other cases are similar.)

(Case 1): (α, x) : p ∈ ∆∞. In this case, (α, x) : p 6∈ Γ∞ because of the fact
Γ∞ ∩∆∞ = ∅. Therefore (α, x) :p is false in M by the definition of V .

(Case 2): (α, x) :p→B ∈ Γ∞ (‡). To show that (α, x) :p→B is true in M , we first
assume

(i) x ≤ y and y ∈ W = Rat(Γ∞, ∆∞), and

(ii) (β, y) :p is true in M (therefore (β, y) :p ∈ Γ∞ by the definition of V );

and we show that (α∪β, y) : B is true in M . By (‡), (i), and the condition (1)
of LE-saturatedness of 〈Γ∞, ∆∞〉, we have (α, y) : p→B ∈ Γ∞. Then, (ii) and the
condition (2) of LE-saturatedness imply (α∪β, y) : B ∈ Γ∞. This means, by the

induction hypothesis for B, that (α∪β, y) :B is true in M .

Theorem 4.2 If a formula A is valid in any Linear Order E-model, then LE `
⇒ (∅, 0) :A.

Proof By the previous lemma. (If LE 6` ⇒ (∅, 0) :A, then A is not valid in a label

model, which is a Liner Order E-model.)

Next we introduce labelled sequent calculi for EM# and S4, and prove their
completeness. The system LEM# is obtained from LE by adding the rule

Γ, (α∪β, x) :p⇒ ∆

Γ, (α, x) :p, (β, x) :p⇒ ∆,
(atomic minglement)

and the system LS4 is obtained from LE by adding the rule

Γ, (α∪β, x) :p⇒ ∆

Γ, (α, x) :p⇒ ∆.
(atomic heredity)

A pair 〈Γ,∆〉 of multiset of labelled formulas is said to be LEM#-saturated if it is
LE-saturated and satisfies the additional condition:
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(5) (for LEM#) If [(α, x) : p ∈ Γ and (β, x) : p ∈ Γ ], then (α∪β, x) : p ∈ Γ .
(Converse of (atomic minglement))

Moreover 〈Γ,∆〉 is said to be LS4-saturated if it is LE-saturated and satisfies the
additional condition:

(5) (for LS4) If [(α, x) : p ∈ Γ and β ∈ (NSet(Γ,∆))∗], then (α∪β, x) : p ∈ Γ .
(Converse of (atomic heredity))

Lemma 4.3 Let Γ and ∆ be finite multisets of labelled formulas. If LEM# (or
LS4) 6` Γ ⇒ ∆, then there exists a label model M such that any labelled formula in
Γ is true in M , any labelled formula in ∆ is false in M , and M satisfies the Atomic
Mingle Condition (the Atomic Hereditary Condition, resp.).

Proof The proof is similar to the proof of Lemma 4.1. First we construct an LEM#-
saturated (or LS4-saturated) pair 〈Γ∞, ∆∞〉. The construction is the same as that
in Lemma 4.1 except that we define five unprovable labelled sequents Π ⇒ Σ, . . . ,
Π ⇒ Σ in the step k, and (Γk ⇒ ∆k) = (Π ⇒ Σ). The definition of Π ⇒ Σ

is described as follows.

(5) (for LEM#) If [Fk is an atomic formula, say p, (ϕk, uk) : p ∈ Π,
and (ψk, uk) :p ∈ Π], then

(Π ⇒ Σ) = (Π, (ϕk∪ψk, uk) :p⇒ Σ);

and otherwise (Π ⇒ Σ) = (Π ⇒ Σ). The fact LEM# 6` Π ⇒ Σ

is guaranteed by the fact LEM# 6` Π ⇒ Σ and the rules (atomic
minglement) and (contraction left).

(5) (for LS4) If [Fk is an atomic formula, say p, (ϕk, uk) : p ∈ Π, and
ψk ∈ (NSet(Π, Σ))

∗], then

(Π ⇒ Σ) = (Π, (ϕk∪ψk, uk) :p⇒ Σ);

and otherwise (Π ⇒ Σ) = (Π ⇒ Σ). The fact LS4 6` Π ⇒ Σ is
guaranteed by the fact LS4 6` Π ⇒ Σ and the rules (atomic heredity)
and (contraction left).

Then we construct a label model M by the same way as Lemma 4.1. The condition
(5) of LEM#-saturatedness implies the Atomic Mingle Condition of M , and the
condition (5) of LS4-saturatedness implies the Atomic Hereditary Condition of M .

Theorem 4.4
(1) If a formula A is valid in any Linear Order E-model that satisfies the Mingle
Condition, then LEM# ` ⇒ (∅, 0) :A.
(2) If a formula A is valid in any Linear Order E-model that satisfies the Hereditary
Condition, then LS4 ` ⇒ (∅, 0) :A.
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Proof By the previous lemma and Theorem 3.1.

We have introduced three labelled sequent calculi for E, EM#, and S4, and
prove their completeness. In the rest of this section, we show similar results for E5,
E5M#, and S5I.

A labelled sequent calculus (LE5/ LE5M#/ LS5I) is obtained from (LE/
LEM#/ LS4, resp.) by replacing the rule (→ label down) with the stronger rule

Γ, (α, y) :
−→
A ⇒ ∆

Γ, (α, x) :
−→
A ⇒ ∆

(→ label) where x, y ∈ Rat(Γ,∆) and x 6= y.

(Therefore LE5M#= LE5 + (atomic minglement), and LS5I= LE5 + (atomic
heredity).) A pair 〈Γ,∆〉 of multiset of labelled formulas is said to be (LE5-saturated
/ LE5M#-saturated / LS5I-saturated) if it is (LE-saturated / LEM#-saturated /
LS4-saturated, resp.) and satisfies the additional condition, which is stronger than
the condition (1):

(1+) If [(α, x) :
−→
A ∈ Γ and y ∈ Rat(Γ,∆)], then (α, y) :

−→
A ∈ Γ . (Converse of (→

label))

A model 〈〈I, ·, e〉, 〈W,R〉, V 〉 is said to be a single cluster label model if it satisfies
the following conditions.

• I is a set of finite sets of natural numbers such that I∗ = I.

• α·β = α ∪ β.

• e = ∅.
• W is a set of rational numbers.

• xRy for any x and y.

In other words, a single cluster label model is obtained from a label model by
extending the accessibility relation to the universal relation.

Lemma 4.5 Let Γ and ∆ be finite multisets of labelled formulas, and L be one of the
systems LE5, LE5M#, and LS5I. If L 6` Γ ⇒ ∆, then there exists a single cluster
label model M such that any labelled formula in Γ is true in M and any labelled
formula in ∆ is false in M . Moreover, M satisfies the Atomic Mingle Condition if
L = LE5M#, and satisfies the Atomic Hereditary Condition if L = LS5I.

Proof The proof is similar to the proofs of Lemmas 4.1 and 4.3. The difference is
the construction of Π ⇒ Σ. We replace the item (1) in the proofs of the lemmas
to the following:
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(1+) If [Fk is an implication, (ϕk, uk) :
−→
Fk ∈ Γk−, and vk ∈ Rat(Γk−, ∆k−)],

then
(Π ⇒ Σ) = (Γk−, (ϕk, vk) :

−→
Fk ⇒ ∆k−);

and otherwise (Π ⇒ Σ) = (Γk− ⇒ ∆k−). The fact L 6` Π ⇒ Σ is
guaranteed by The fact L 6` Γk− ⇒ ∆k− and the rules (→ label) and
(contraction left).

Then we get an L-saturated pair 〈Γ∞, ∆∞〉, and we construct the required single

cluster label model M by the same way as the proofs of the lemmas.

Theorem 4.6
(1) If a formula A is valid in any Single Cluster E-model then LE5 ` ⇒ (∅, 0) :A.
(2) If a formula A is valid in any Single Cluster E-model that satisfies the Mingle
Condition, then LE5M# ` ⇒ (∅, 0) :A.
(3) If a formula A is valid in any Single Cluster E-model that satisfies the Hereditary
Condition, then LS5I ` ⇒ (∅, 0) :A.

Proof By the previous lemma and Theorem 3.1.

5 From labelled sequents to unlabelled sequents

In this section we prove the following: If a labelled sequent S is provable in LX, then
an unlabelled sequent T is provable in GX where T is “extracted” from S in a certain
way. This includes the following claim as a special case: If LX ` ⇒ (∅, 0) :A,
then GX ` 7→ A. Before giving detailed argument, we explain an outline of the
“extraction”.

In the case of relevant logic R, the situation is relatively simple. The sequent
calculus GR is obtained from GE by adding the ordinary exchange rule

Γ,A,B,∆ 7→ C
Γ,B,A,∆ 7→ C.

The labelled sequent calculus LR is defined as follows, where a label is a finite set
of natural numbers. (Since the model of R is “single world”, labels reflect only the
structure of “pieces of information”.) Axioms of LR are

Γ, α :A⇒ α :A, ∆.

Inference rules of LR are “contraction left/right” and the following.

Γ ⇒ β :A, ∆ Γ, α∪β :B ⇒ ∆
Γ, α :A→B ⇒ ∆

(→ left)

Γ, {a} :A⇒ α∪{a} :B, ∆

Γ ⇒ α :A→B, ∆
(→ right) with a condition:

(Label Condition) a does not appear in the lower sequent. Then the “extraction”
from LR is stated as follows.
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If LR ` Γ ⇒ ∆, then there exists a labelled formula β :B ∈ ∆ and there
exist labelled formulas α :A, . . . , αn :An ∈ Γ (n ≥ 0) such that

• α ∪ · · · ∪ αn = β; and

• GR ` A1, . . . , An 7→ B.

This is proved by induction on the proofs in LR.
The “extraction” from the systems introduced in the previous section basi-

cally follows the above one for LR. However, there is a counterexample which
shows the above simple strategy does not work for LEM#: The labelled sequent
({1}, 0) :p, ({2}, 0) :p⇒ ({1, 2}, 0) :p is provable in LEM#, but the sequent p, p 7→ p
is not provable in GEM#. To deal with such a case, the “extraction” from LEM#

is established as follows.

If LEM# ` Γ ⇒ ∆, then there exists a labelled formula (β, y) :B ∈ ∆
and there exist labelled formulas (α, x) :A, . . . , (αn, xn) :An ∈ Γ (n ≥
0) such that

• α ∪ · · · ∪ αn = β;

• x1, . . . , xn ≤ y; and

• GEM# ` C1, . . . , Ck 7→ B for any “normal” sequence (C1, . . . , Ck)
obtained from (A1, . . . , An) by certain “rules”.

This is a sketch, and the precise descriptions will be given by Main Lemmas 5.8 (for
LE, LEM#, and LS4) and 5.10 (for LE5, LE5M#, and LS5I). Here we only note
some facts, which indicate how to handle the above counterexample.

• (p, p) is not “normal”.

• (
−→
A→p,

−→
A, p) is “normal”, and it is obtained from (p, p) by the “rules”.

• GEM# ` −→A→p,
−→
A, p 7→ p.

Now we start detailed proofs. In this section, the letters Γ,∆, . . . will be used as
metavariables for finite sequences of formulas, for finite multisets of formulas, or for
finite multisets of labelled formulas, depending on the context.

First we introduce some rules which transform finite multisets of formulas:

Γ,A,A
Γ,A

(contraction)(“co”, for short)

Γ,B
Γ,A→B,A

(implication)(“imp”, for short)

Γ,B
Γ,A→B,A,B

(copy-implication)(“c-imp”, for short)

Γ
Γ,A

(weakening)(“we”, for short)
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That is, for exmple, the multiset (W,X, Y,X→Z) of formulas can be obtained from
the multiset (W,Y, Z) by “implication”. Then we define three sets of the rules as
follows.

¤E = {co, imp}.
¤EM# = {co, imp, c-imp}.
¤S4 = {co, imp, we}.

(The subscripts E/EM#/S4 represent that these are devices to show the “extrac-
tion” for the denoted logics.) Let ¤X be one of these sets, and Γ and ∆ be finite
multisets of formulas. We write

Γ ¤X ∆

if ∆ is obtained from Γ by finitely successive (posiibly zero) applications of the
rules in ¤X . The following lemmas are obvious by the definition, and they will be
implicitly used later.

Lemma 5.1
(1) ∅ ¤X ∅, for X ∈ {E,EM#,S4}.
(2) Γ ¤X ∅ only if Γ = ∅, for X ∈ {E,EM#,S4}.
(3) ∅ ¤X ∆ only if ∆ = ∅, for X ∈ {E,EM#}.

Lemma 5.2 If Γ ¤X ∆ and Γ ¤X ∆, then (Γ, Γ) ¤X (∆, ∆), for X ∈
{E,EM#,S4}.

Let Γ be a finite sequence of formulas or be a finite multiset of formulas. We say
that Γ is atom-normal if (1) Γ contains at most one atomic formula; and (2) the
atomic formula exists at the right most position if Γ is a sequence which contains
an atomic formula. In other words, Γ is atom-normal if either Γ does not contain
an atomic formula or Γ = (Γ ′, p) where Γ ′ does not contain an atomic formula.

If Γ is an atom-normal multiset of formulas, then Γ ◦ denotes an atom-normal
sequence of formulas such that the members of Γ ◦ are exactly the same as Γ
(this means that the atomic formula, if exists, is at the right most position in

Γ ◦). For example, both the sequences (
−→
A,
−→
B ,
−→
A,
−→
B , p) and (

−→
B ,
−→
B ,
−→
A,
−→
A, p) are

{p,−→A,−→A,−→B ,−→B }◦.
Let Γ and ∆ be atom-normal multisets whose atomic formulas, if exit, are iden-

tical. Then we define an atom-normal multiset Γ ∪◦ ∆ as follows.

Γ ∪◦ ∆ =

{
(Γ ′, ∆′, p) (if Γ = (Γ ′, p) and ∆ = (∆′, p)),
(Γ,∆) (otherwise).

Let Γ and ∆ be finite multisets of formulas. We say that ∆ is a contraction
of Γ if ∆ is obtained from Γ by finitely successive (possibly zero) applications of
“contraction”.
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Lemma 5.3 Let X be one of E, EM#, and S4. If n ≥ 1, (A1, . . . , An) ¤X Γ , and
Γ is atom-normal, then there exist atom-normal multisets Γ, . . . , Γn that satisfy the
following.

(1) Γ is a contraction of (Γ, . . . , Γn). (Therefore, the atomic formulas in Γ, . . . , Γn

are, if exist, identical because of the atom-normalness of Γ .)

(2) Ai ¤X Γi (i = 1, . . . , n).

(3) GX ` Γ ◦i 7→ Ai (i = 1, . . . , n).

(We will call Γi the descendant of Ai.)

Note that in the item (3) above, the arbitrariness of the order of implications in Γ ◦i
does not cause a problem since GX has the rule (ex010).

Proof By induction on the number of the steps of transformation (i.e., the number
of applications of the rules) from (A1, . . . , An) to Γ .

(Case 0): The number is 0; that is, Γ = (A, . . . , An). In this case, the descendant
of Ai is the singleton Ai.

(Case 1): The number is k > 0; that is, there exists a multiset Γ ′ that satisfies
the following.

• Γ ′ is obtained from (A1, . . . , An) by one application of a rule, say R.

• Γ ′ ¤X Γ with (k−1)-steps. (Therefore, the induction hypothesis is available
for Γ ′.)

(Subcase 1-1): R = contraction. In this case, n ≥ 2, Γ ′ = (A, . . . , An−) and
An = An−1 (by arbitrariness of the order in a multiset). Then, by the induction
hypothesis, there are descendants Γ, . . . , Γn− of A1, . . . , An−1; and the required
descendants of A1, . . . , An−1, An are Γ, . . . , Γn−, Γn−, respectively. The conditions
(1), (2) and (3) are easily verified by the induction hypothesis.

(Subcase 1-2): R = implication. In this case, Γ ′ = (A, . . . , An−, C→An, C),
and there are descendants Γ, . . . , Γn−, ΓC→An , ΓC of, respectively, A1,. . . ,An−1,
C→An, C by the induction hypothesis. Then the required descendants of A1, . . . ,
An−1, An are Γ, . . . , Γn−, ΓC→An∪◦ΓC . The condition (1) is shown by the definition
of ΓC→An∪◦ΓC and the induction hypothesis. The condition (2) is shown by the fact

An ¤X (C→An, C) ¤X (ΓC→An , ΓC) ¤X ΓC→An∪◦ΓC

which is guaranteed by Lemma 5.2 and the induction hypothesis. The condition (3)
is shown by the induction hypothesis and the following proof in GX.

Γ ◦C 7→ C

Γ ◦C→An
7→ C→An

Γ ◦C→An
, C 7→ An

(→ right−1) (Lemma 2.2)

Γ ◦C→An
, Γ ◦C 7→ An

(cut)
.... (ex010), (contraction)

(ΓC→An∪◦ΓC)◦ 7→ An
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(Subcase 1-3): R = copy-implication, and X = EM#. In this case, Γ ′ =
(A, . . . , An−, C→An, C,An), and there are descendants Γ, . . . , Γn−, ΓC→An , ΓC ,
ΓAn of, respectively, A1, . . . , An−1, C→An, C, An by the induction hypothesis. Then
the required descendants of A1, . . . , An−1, An are Γ, . . . , Γn−, ΓC→An∪◦ΓC∪◦ΓAn .
The condition (1) is shown by the definition of ∪◦ and the induction hypothesis.
The condition (2) is shown by the fact

An ¤EM# (C→An, C,An) ¤EM# (ΓC→An , ΓC , ΓAn) ¤EM#

ΓC→An∪◦ΓC∪◦ΓAn

which is guaranteed by Lemma 5.2 and the induction hypothesis. The condition (3)
is shown by the induction hypothesis and the following proofs in GEM#.

[In case that ΓAn contains no atomic formula.]

Γ ◦C→An
7→ C→An

Γ ◦C 7→ C

Γ ◦An
7→ An

Γ ◦An
, An 7→ An

(m#)†

Γ ◦An
, C→An, Γ

◦
C 7→ An

(→ left)

Γ ◦An
, Γ ◦C→An

, Γ ◦C 7→ An
(cut)

.... (ex010), (contraction)
(ΓC→An∪◦ΓC∪◦ΓAn)◦ 7→ An

(†): There is an implication in the right most position in Γ ◦An
because of the induction

hypothesis (2) and Lemma 5.1(2).
[In case that ΓC contains no atomic formula.]

Γ ◦An
7→ An

Γ ◦C→An
7→ C→An

Γ ◦C 7→ C An 7→ An

C→An, Γ
◦
C 7→ An

(→ left)

C→An, Γ
◦
C , An 7→ An

(m#)

Γ ◦C→An
, Γ ◦C , An 7→ An

(cut)

Γ ◦C→An
, Γ ◦C , Γ

◦
An
7→ An

(cut)
.... (ex010), (contraction)

(ΓC→An∪◦ΓC∪◦ΓAn)◦ 7→ An

[In case that ΓAn = (Φ, p) and ΓC = (Ψ, p).]

Γ ◦C→An
7→ C→An

Γ ◦An
7→ An

Φ 7→ p→An
(→ right)

Γ ◦C 7→ C An 7→ An

C→An, Γ
◦
C 7→ An

(→ left)

C→An, Ψ 7→ p→An
(→ right)

C→An, Ψ, p→An 7→ p→An
(m#)

C→An, Ψ, Φ 7→ p→An
(cut)

C→An, Ψ, Φ, p 7→ An
(→ right−1) (Lemma 2.2)

Γ ◦C→An
, Ψ, Φ, p 7→ An

(cut)
.... (ex010), (contraction)

(ΓC→An∪◦ΓC∪◦ΓAn)◦ 7→ An
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(Subcase 1-4): R = weakening, and X = S4. In this case, Γ ′ = (A, . . . , An, B),
and there are descendants Γ, . . . , Γn, ΓB of, respectively, A1, . . . , An, B by the
induction hypothesis. Then the required descendants of A1, . . . , An−1, An are Γ,
. . . , Γn−, Γn∪◦ΓB. The condition (1) is shown by the definition of ∪◦ and the
induction hypothesis. The condition (2) is shown by the fact

An ¤S4 (An, B) ¤S4 (Γn, ΓB) ¤S4 Γn∪◦ΓB

which is guaranteed by Lemma 5.2 and the induction hypothesis. The condition (3)
is shown by the induction hypothesis and the following proof in GS4.

Γ ◦n 7→ An.... (we01)†

Γ ◦B, Γ
◦
n 7→ An.... (ex010), (contraction)

(Γn∪◦ΓB)◦ 7→ An

(†): Γn 6= ∅ by the induction hypothesis (2) and Lemma 5.1(2).

Lemma 5.4 Let X be one of E, EM#, and S4. If A ¤X Γ and Γ is atom-normal,
then GX ` Γ ◦ ⇒ A.

Proof By Lemma 5.3 and the contraction rule in GX.

Lemma 5.5 Let X be one of E, EM#, and S4, and ∆ and Γ be finite multisets of
formulas. If ∆ ¤X Γ and Γ is atom-normal, then the following inference rule is
derivable in GX.

· · · , ∆,−−−−−−→· · · 7→ · · ·
· · · , Γ ◦,−−−−−−→· · · 7→ · · · (conditional replace ∆ by Γ ◦)

(this sequence ∆ is an arbitrary permutation of the multiset ∆). That is, for any
Φ, Ψ and F such that [Ψ 7→ F ] is an implication, there is a derivation from the
sequent Φ,∆, Ψ 7→ F to the sequent Φ, Γ ◦, Ψ 7→ F in GX.

Proof (Case 1): ∆ = (A, . . . , An) and n ≥ 1. We apply Lemma 5.3, and a
derivation from (Φ,∆, Ψ 7→ F ) to (Φ, Γ ◦, Ψ 7→ F ) is obtained as follows.

.... Lemma 5.3(3)
Γ ◦n 7→ An

.... Lemma 5.3(3)
Γ ◦ 7→ A Φ,A, . . . , An, Ψ 7→ F

Φ, Γ ◦ , A, . . . , An, Ψ 7→ F
(cut)

....
Φ, Γ ◦ , . . . , Γ

◦
n−, An, Ψ 7→ F

Φ, Γ ◦ , . . . , Γ
◦
n , Ψ 7→ F

(cut)
.... (ex010), (contraction)

Φ, Γ ◦, Ψ 7→ F .

(Case 2): ∆ is empty. If X = E or EM#, then Γ must be empty by Lemma 5.1

(3). If X = S4, then the rule (conditional replace ∆ by Γ ◦) is obtained by (we01).
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Lemma 5.6 Let X be one of E, EM#, and S4. If Φ, Ψ and Σ are finite multisets
of formulas such that (Φ, Ψ) ¤X Σ and Σ is atom-normal, then there exist atom-
normal multisets Θ and Λ such that (Φ ¤X Θ), (Ψ ¤X Λ) and that the rule

· · · , Θ◦, Λ◦, · · · 7→ · · ·
· · · , Σ◦, · · · 7→ · · · (replace (Θ◦, Λ◦) by Σ◦)

is derivable in the sequent calculus GE.

Proof If Φ = ∅, then Θ = ∅ and Λ = Σ. If Ψ = ∅, then Θ = Σ and Λ = ∅. If
Φ = (A, . . . , Am), Ψ = (B, . . . , Bn) and m,n ≥ 1, then we apply Lemma 5.3, and
we get atom-normal multisets Φ, . . . , Φm, Ψ, . . . , Ψn that satisfy the following.

(1) Σ is a contraction of (Φ, . . . , Φm, Ψ, . . . , Ψn). If (Φ, . . . , Φm, Ψ, . . . , Ψn) con-
tains atomic formulas, then all these atomic formulas are identical.

(2) Ai ¤X Φi (i = 1, . . . ,m) and Bi ¤X Ψi (i = 1, . . . , n).

Then we take Θ = Φ∪◦ · · ·∪◦Φm and Λ = Ψ∪◦ · · ·∪◦Ψn. The rule (replace (Θ◦, Λ◦)
by Σ◦) is obtained by the rules (ex010) and (contraction). The required properties
Φ ¤X Θ and Ψ ¤X Λ are shown by the facts

Φ = (A, . . . , Am) ¤X (Φ, . . . , Φm) ¤X (Φ ∪◦ · · · ∪◦ Φm) = Θ, and

Ψ = (B, . . . , Bn) ¤X (Ψ, . . . , Ψn) ¤X (Ψ ∪◦ · · · ∪◦ Ψn) = Λ,

which are guaranteed by Lemma 5.2.

Lemma 5.7 If (Γ, p, p) ¤EM# ∆ and ∆ is atom-normal, then (Γ, p) ¤EM# ∆.

Proof By induction on the number of the steps of transformation from (Γ, p, p) to
∆.

(Case 0): The number is 0. This case does not happen because (Γ, p, p) is not
atom-normal.

(Case 1): The number is k > 0; that is, there exists a multiset Φ that satisfies
the following.

• Φ is obtained from (Γ, p, p) by one application of a rule, say R.

• Φ ¤EM# ∆ with (k−1)-steps. (Therefore, if Φ is of the form (Φ′, p′, p′), the
induction hypothesis is available.)

(Subcase 1-1): R operates on Γ ; that is, Φ = (Γ ′, p, p) and Γ ¤EM# Γ ′. In this
case, we have

(Γ, p) ¤EM# (Γ ′, p) ¤EM# ∆ (by the induction hypothesis).
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(Subcase 1-2): R = contraction, and it operates on p. In this case, Φ is of the
form (Γ, p); and (Γ, p) ¤EM# ∆ with (k−1)-steps.

(Subcase 1-3): R = implication, and it operates on p. In this case, Φ is of the
form (Γ,A→p,A, p), which is also obtained from (Γ, p) by one application of the
copy-implication rule. Hence we have (Γ, p) ¤EM# Φ ¤EM# ∆.

(Subcase 1-4): R = copy-implication, and it operates on p. In this case, Φ is of the
form (Γ,A→p,A, p, p). Then, by the induction hypothesis, we have (Γ,A→p,A, p)

¤EM# ∆; and therefore we have (Γ, p) ¤EM# (Γ,A→p,A, p) ¤EM# ∆.

If Γ is a finite multiset of labelled formulas, then Γ↓ is defined to be the multiset
of formulas that is obtained from Γ by deleting the labels. For example,

{(α, x) :A, (α, x) :A, (α, x) :B, (β, y) :B}↓ = {A,A,B,B}.

If Γ is a finite multiset of labelled formulas and x is a rational number, then by
Γ〈x〉 (or Γ〈−x〉), we mean the multisubset of Γ in which each rational number of the
label is x (or, is not x, resp.). For example, if ∆ is

{(α, x) :A, (β, y) :B, (β, y) :B, (γ, y) :C, (γ, z) :C, (δ, z) :C},

(y 6= x, y 6= z) then

∆〈y〉 = {(β, y) :B, (β, y) :B, (γ, y) :C},

∆〈−y〉 = {(α, x) :A, (γ, z) :C, (δ, z) :C}.
Let Γ ⇒ ∆ be a labelled sequent, and x1, . . . , xn be the rational numbers such

that Rat(Γ,∆) = {x, . . . , xn} and x1 < x2 < · · · < xn. Then the expression

Γ〈x〉;Γ〈x〉; · · · ;Γ〈xn〉 ⇒ ∆〈x〉;∆〈x〉; · · · ;∆〈xn〉

is said to be the linear partition of Γ ⇒ ∆.
Now we are ready to show the precise description of the “extraction”.

Lemma 5.8 (Main Lemma for LE, LEM#, and LS4) Let X be one of E, EM#,
and S4, and let Γ; · · · ;ΓN ⇒ ∆; · · · ;∆N be the linear partition of a labelled sequent
Γ ⇒ ∆. If LX ` Γ ⇒ ∆, then, for some k ∈ {1, . . . , N}, there exists a labelled for-
mula (ϕ, xk) : F in ∆k and there exist multisubsets Π, Π, . . . , Πk of, respectively,
Γ, Γ, . . . , Γk that satisfy the following conditions.

(1)
⋃

NSet(Π, . . . , Πk) = ϕ, if X = E or EM#.⋃
NSet(Π, . . . , Πk) ⊆ ϕ, if X = S4.

(2) GX ` Σ◦
 , . . . , Σ

◦
k 7→ F for any atom-normal multisets Σ, . . . , Σk such that

Πi↓ ¤X Σi (i = 1, . . . , k).

(The labelled sequent Π;Π; · · · ;Πk ⇒ (ϕ, xk) :F will be called an extract of Γ ⇒ ∆.)

31



Proof By induction on the proof of Γ ⇒ ∆ in LX. We divide cases according to
the last inference of the proof of Γ ⇒ ∆.

(Case 1): Γ ⇒ ∆ is an axiom Γ ′, (α, xn) :A⇒ (α, xn) :A,∆′. In this case, the
required extract is

∅; · · · ; ∅; (α, xn) :A⇒ (α, xn) :A.

The condition (1) obviously holds. If X = E or EM#, then the condition (2) is
shown by Lemma 5.1(3) and Lemma 5.4. If X = S4, then the condition (2) is shown
by Lemma 5.4 and the rule (we01). (Note that Σn is not empty by Lemma 5.1(2).)

(Case 2): The last inference is

Γ ′, (α, xn) :A, (α, xn) :A⇒ ∆

Γ ′, (α, xn) :A⇒ ∆.
(contraction left)

By the induction hypothesis, there is an extract of the upper sequent. If the left-
part of the extract contains at most one occurrence of (α, xn) :A, then we take the
extract as the required one of the lower sequent. If the the extract of the upper
sequent is of the form

Φ; · · · ;Φn−; Φn, (α, xn) :A, (α, xn) :A; Φn+; · · · ;Φm ⇒ (β, xm) :B

(m ≥ n), then the required extract is

Φ; · · · ;Φn−; Φn, (α, xn) :A; Φn+; · · · ;Φm ⇒ (β, xm) :B.

The condition (1) obviously holds by the induction hypothesis; and (2) is shown by
the induction hypothesis and the fact that (Φn↓, A) ¤X Σ implies (Φn↓, A,A) ¤X Σ.

(Case 3): The last inference is “contraction right”. In this case, the extract
obtained by the induction hypothesis is just the required extract.

(Case 4): The last inference is

Γ ′, (α, xn+) :
−→
A ⇒ ∆

Γ ′, (α, xn) :
−→
A ⇒ ∆.

(→ label down)

By the induction hypothesis, there is an extract of the upper sequent. If the left-
part of the extract does not contain (α, xn+) :

−→
A , then we take the extract as the

required one of the lower sequent. If the the extract of the upper sequent is of the
form

Φ; · · · ;Φn−;Φn; Φn+, (α, xn+) :
−→
A ; Φn+; · · · ;Φm ⇒ (β, xm) :B

(m ≥ n+1), then the required extract is

Φ; · · · ;Φn−; Φn, (α, xn) :
−→
A ; Φn+;Φn+; · · · ;Φm ⇒ (β, xm) :B.

(Note that xn ∈ Rat(Γ ′, ∆) by the Label Condition on the inference rule. This
guarantees Rat(Φn) = {xn}.) The condition (1) obviously holds by the induction
hypothesis. We will show the condition (2). Let Σ, . . . , Σm be atom-normal multi-
sets such that
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(i) Φi↓ ¤X Σi, for i = 1, . . . , n−1, n+1, . . . ,m; and

(ii) (Φn↓,−→A ) ¤X Σn.

By (ii) and Lemma 5.6, there are atom-normal multisets Θ and Λ such that

(iii) Φn↓ ¤X Θ;

(iv)
−→
A ¤X Λ; and

(v) the rule (replace (Θ◦, Λ◦) by Σ◦
n) is derivable in GX.

By (i) (i = n + 1), we have (Φn+↓,−→A ) ¤X (Σn+,
−→
A ) where (Σn+,

−→
A ) is atom-

normal. Therefore (i), (iii) and the induction hypothesis imply

GX ` Σ◦
 , . . . , Σ

◦
n−, Θ

◦, (Σn+,
−→
A )◦, Σ◦

n+, . . . , Σ
◦
m 7→ B,

and then

GX ` Σ◦
 , . . . , Σ

◦
n−, Θ

◦,
−→
A,Σ◦

n+, Σ
◦
n+, . . . , Σ

◦
m 7→ B

by the rule (ex010). On the other hand, we have

GX ` Λ◦ 7→ −→
A

by (iv) and Lemma 5.4. Hence, by the cut rule and the condition (v), we have

GX ` Σ◦
 , . . . , Σ

◦
n−, Σ

◦
n, Σ

◦
n+, . . . , Σ

◦
m 7→ B.

(Case 5): The last inference is

Γ ′, (α∪β, xn) :B ⇒ ∆

Γ ′, (α, xn) :p→B, (β, xn) :p⇒ ∆.
(→ left 0)

By the induction hypothesis, there is an extract of the upper sequent. If the left-
part of the extract does not contain (α∪β, xn) :B, then we take the extract as the
required one of the lower sequent. If the the extract of the upper sequent is of the
form

Φ; · · · ;Φn−; Φn, (α∪β, xn) :B; Φn+; · · · ;Φm ⇒ (γ, xm) :C

(m ≥ n), then the required extract is

Φ; · · · ;Φn−; Φn, (α, xn) :p→B, (β, xn) :p; Φn+; · · · ;Φm ⇒ (γ, xm) :C.

The condition (1) obviously holds by the induction hypothesis; and (2) is shown
by the induction hypothesis and the fact that (Φn↓, p→B, p) ¤X Σ implies (Φn↓
, B) ¤X Σ.
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(Case 6): The last inference is

Γ ′ ⇒ (β, xn) :
−→
A, ∆ Γ ′, (α∪β, xn) :B ⇒ ∆

Γ ′, (α, xn) :
−→
A→B ⇒ ∆.

(→ left 1)

By the induction hypotheses, there are extracts of the left and of the right upper
sequents. If the right-part of the extract of the left upper sequent is not (β, xn) :

−→
A ,

then we take this as the required extract of the lower sequent. Similarly, if the
left-part of the extract of the right upper sequent does not contain (α∪β, xn) :B,
then we take this as the required extract. The remaining case is that the extracts
are of the forms

Φ; · · · ;Φn ⇒ (β, xn) :
−→
A , and

Ψ; · · · ;Ψn−; Ψn, (α∪β, xn) :B; Ψn+; · · · ;Ψm ⇒ (γ, xm) :C

where m ≥ n. In this case, the required extract is

Φ ⊕ Ψ; · · · ;Φn− ⊕ Ψn−; (Φn ⊕ Ψn), (α, xn) :
−→
A→B; Ψn+; · · · ;Ψm ⇒ (γ, xm) :C

where Φ ⊕ Ψ is the least (with respect to the number of elements) contraction of
Φ ∪m Ψ . (For example, {(α, x) : A, (α, x) : A, (β, y) : B, (β, y) : B} ⊕ {(β, y) :
B, (γ, z) :C} = {(α, x) :A, (β, y) :B, (γ, z) :C}.) The condition (1) is easily verified
by the induction hypotheses. We will show the condition (2). Let Σ, . . . , Σm be
atom-normal multisets such that

(i) (Φi ⊕ Ψi)↓ ¤X Σi, for i = 1, . . . , n−1;

(ii) ((Φn ⊕ Ψn)↓,−→A→B) ¤X Σn; and

(iii) Ψi↓ ¤X Σi, for i = n+1, . . . ,m.

By (i) and the definitions of ⊕ and ¤X , we have

((Φi↓), (Ψi↓)) ¤X Σi

for i = 1, . . . , n−1; and similarly, by (ii) and the definitions, we have

((Φn↓), (Ψn↓,−→A→B)) ¤X Σn.

Then we apply Lemma 5.6 to these, and we get atom-normal multisets Θ, . . . , Θn

and Λ, . . . , Λn that satisfy the following.

(iv) Φi↓ ¤X Θi, for i = 1, . . . , n.

(v) Ψi↓ ¤X Λi, for i = 1, . . . , n−1.

(vi) (Ψn↓,−→A→B) ¤X Λn.
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(vii) The rule (replace (Θ◦i , Λ
◦
i ) by Σ◦

i ) is derivable in GX, for i = 1, . . . , n.

The definition of ¤X and (vi) imply the fact

(viii) (Ψn↓, B) ¤X (
−→
A,Λn),

where (
−→
A,Λn) is atom-normal. Now the induction hypotheses are available by (iii),

(iv), (v), and (viii); and we have

GX ` Θ◦, . . . , Θ◦n 7→ −→
A , and

GX ` Λ◦, . . . , Λ◦n−,
−→
A,Λ◦n, Σ

◦
n+, . . . , Σ

◦
m 7→ C.

Then, by the merge cut rule (Lemma 2.3) and “replacing each (Θ◦i , Λ
◦
i ) by Σ◦

i ”, we
have

GX ` Σ◦
 , . . . , Σ

◦
m 7→ C.

(Case 7): The last inference is

Γ, ({a}, xn+) :A⇒ (α∪{a}, xn+) :B, ∆′

Γ ⇒ (α, xn) :A→B, ∆′.
(→ right)

By the induction hypothesis, there is an extract of the upper sequent.
(Subcase 7-1) The right-part of the extract is (β, xm) :C, which is not equal to

(α∪{a}, xn+) :B. In this case, by the condition (1) of the induction hypothesis and
the Label Condition 1 on the inference rule, the left-part of the extract does not
contain ({a}, xn+1) :A. If xm ≤ xn, then the extract is just the required one of the
lower sequent. If xm > xn+1, then the extract of the upper sequent is of the form

Φ; · · · ;Φn; ∅; Φn+; · · · ;Φm ⇒ (β, xm) :C,

and the required extract is

Φ; · · · ;Φn; Φn+; · · · ;Φm ⇒ (β, xm) :C.

(Note that xn+1 6∈ Rat(Γ, (α, xn) :A→B,∆′).) The condition (1) obviously holds by
the induction hypothesis; and (2) is shown by the induction hypothesis and the fact
that ∅ ¤X ∅.

(Subcase 7-2) The right-part of the extract of the upper sequent is (α∪{a}, xn+) :
B. If X = E or EM#, then the extract of the upper sequent is of the form

Φ; · · · ;Φn; ({a}, xn+) :A⇒ (α∪{a}, xn+) :B

because of the condition (1) of the induction hypothesis and the Label Condition 1
on the inference rule. If X = S4, then the extract of the upper sequent is either the
above one or of the form

Φ; · · · ;Φn; ∅ ⇒ (α∪{a}, xn+) :B.
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In any case, the required extract is

Φ; · · · ;Φn ⇒ (α, xn) :A→B.

The condition (1) is easily verified by the induction hypothesis and the Label Con-
dition 1; and (2) is shown by the induction hypothesis and the facts A ¤X A and
∅ ¤S4 A.

(Case 8): X = EM#, and the last inference is

Γ ′, (α∪β, xn) :p⇒ ∆

Γ ′, (α, xn) :p, (β, xn) :p⇒ ∆.
(atomic minglement)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α∪β, xn) :p, then we take the extract as the required
one of the lower sequent. If the the extract of the upper sequent is of the form

Φ; · · · ;Φn−; Φn, (α∪β, xn) :p; Φn+; · · · ;Φm ⇒ (γ, xm) :C

(m ≥ n), then the required extract is

Φ; · · · ;Φn−; Φn, (α, xn) :p, (β, xn) :p; Φn+; · · · ;Φm ⇒ (γ, xm) :C.

The condition (1) obviously holds by the induction hypothesis; and (2) is shown by
the induction hypothesis and Lemma 5.7.

(Case 9): X = S4, and the last inference is

Γ ′, (α∪β, xn) :p⇒ ∆

Γ ′, (α, xn) :p⇒ ∆.
(atomic heredity)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α∪β, xn) :p, then we take the extract as the required
one of the lower sequent. If the the extract of the upper sequent is of the form

Φ; · · · ;Φn−; Φn, (α∪β, xn) :p; Φn+; · · · ;Φm ⇒ (γ, xm) :C

(m ≥ n), then the required extract is

Φ; · · · ;Φn−; Φn, (α, xn) :p; Φn+; · · · ;Φm ⇒ (γ, xm) :C.

The conditions (1) and (2) obviously hold by the induction hypothesis.

Theorem 5.9 Let X be one of E, EM#, and S4. If LX ` ⇒ (∅, 0) :A, then
GX ` 7→ A.

Proof By the previous lemma and the fact ∅ ¤X ∅.

Next we show the extraction from LE5, LE5M# and LS5I.
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Lemma 5.10 (Main Lemma for LE5, LE5M#, and LS5I) Let X be one of E5,
E5M#, and S5I. If a labelled sequent Γ ⇒ ∆ is provable in LX, then there exists
a labelled formula (ϕ, z) :F in ∆ and there exists a multisubset Π of Γ that satisfy
the following conditions.

(1)
⋃

NSet(Π) = ϕ, if X = E5 or E5M#.⋃
NSet(Π) ⊆ ϕ, if X = S5I.

(2) If F is an implication, then GX ` Π↓7→ F for any sequence Π ↓ (i.e., an
arbitrary permutation of Π↓). If F is an atomic formula, then the following
two conditions hold.

(2-1) GX ` Π〈−z〉↓, Σ◦ 7→ F for any sequence Π〈−z〉↓ and any atom-normal multisets
Σ such that Π〈z〉↓ ¤X Σ, where ¤E5 is equal to ¤E , ¤E5M# is equal to
¤EM# , and ¤S5I is equal to ¤S4 .

(2-2) Π〈z〉 is not empty, or Π〈−z〉 contains at least one implication.

(The labelled sequent Π ⇒ (ϕ, z) :F will be called an extract of Γ ⇒ ∆.)

Proof By induction on the proof of Γ ⇒ ∆ in LX. We divide cases according to
the last inference of the proof of Γ ⇒ ∆.

(Case 1): Γ ⇒ ∆ is an axiom Γ ′, (α, x) :A⇒ (α, x) :A,∆′. In this case,

(α, x) :A⇒ (α, x) :A

is the required extract. The conditions (1) and (2) are easily verified. (When A is
atomic, we use Lemma 5.4 to show (2-1).)

(Case 2): The last inference is

Γ ′, (α, x) :A, (α, x) :A⇒ ∆

Γ ′, (α, x) :A⇒ ∆.
(contraction left)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract contains at most one occurrence of (α, x) :A, then we take the extract
as the required one of the lower sequent. If the extract of the upper sequent is of
the form

Φ, (α, x) :A, (α, x) :A⇒ (β, y) :B,

then the required extract is

Φ, (α, x) :A⇒ (β, y) :B.

The conditions (1) and (2) are easily verified by the induction hypothesis. (When
x = y and B is atomic, we use the fact that (Φ〈y〉 ↓, A) ¤X Σ implies (Φ〈y〉 ↓
, A,A) ¤X Σ. )
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(Case 3): The last inference is “contraction right”. In this case, the extract
obtained by the induction hypothesis is just the required extract.

(Case 4): The last inference is

Γ ′, (α, y) :
−→
A ⇒ ∆

Γ ′, (α, x) :
−→
A ⇒ ∆.

(→ label)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α, y) :

−→
A , then we take the extract as the required

one of the lower sequent. If the extract of the upper sequent is of the form

Φ, (α, y) :
−→
A ⇒ (β, z) :B,

then the required extract is

Φ, (α, x) :
−→
A ⇒ (β, z) :B.

The condition (1) obviously holds by the induction hypothesis. IfB is an implication,
also the condition (2) is obvious. In the following, we assume B is atomic, and we
will show the condition (2-1). (The condition (2-2) is obvious.) We consider three
cases according to the values of x, y, z.

(Case A): y 6= z and x 6= z. In this case, the condition (2-1) obviously holds by

the induction hypothesis because both (α, x) :
−→
A and (α, y) :

−→
A belong to Φ〈−z〉.

(Case B): y = z and x 6= z. In this case, the condition (2-1) is shown by the
induction hypothesis, the rule (ex010), and the fact

Φ〈z〉↓ ¤X Σ implies (
−→
A,Φ〈z〉↓) ¤X (

−→
A,Σ),

where (
−→
A,Σ) is atom-normal.

(Case C): y 6= z and x = z. In this case, the condition (2-1) is shown as follows.
Let Σ be an atom-normal multiset such that

(i) (
−→
A,Φ〈z〉↓) ¤X Σ.

By (i) and Lemma 5.6, there are atom-normal multisets Θ and Λ such that

(ii)
−→
A ¤X Θ;

(iii) Φ〈z〉↓ ¤X Λ; and

(iv) the rule (replace (Θ◦, Λ◦) by Σ◦) is derivable in GX.

By (iii) and the induction hypothesis, we have

GX ` Φ〈−z〉↓,−→A,Λ◦ 7→ B.

On the other hand, we have
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GX ` Θ◦ 7→ −→
A

by (ii) and Lemma 5.4. Hence, by the cut rule and the condition (iv), we have

GX ` Φ〈−z〉↓, Σ◦ 7→ B.

(Case 5): The last inference is

Γ ′, (α∪β, x) :B ⇒ ∆

Γ ′, (α, x) :p→B, (β, x) :p⇒ ∆.
(→ left 0)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α∪β, x) :B, then we take the extract as the required
one of the lower sequent. If the extract of the upper sequent is of the form

Φ, (α∪β, x) :B ⇒ (γ, y) :C,

then the required extract is

Φ, (α, x) :p→B, (β, x) :p⇒ (γ, y) :C.

The condition (1) obviously holds by the induction hypothesis. If C is an implication,
the condition (2) is shown by the induction hypothesis and the rule (ex001). In the
following, we assume C is atomic, and we will show the condition (2-1). (The
condition (2-2) is obvious.) We consider two cases according to the values of x, y.

(Case A): x 6= y. Let Σ be an atom-normal multiset such that Φ〈y〉↓ ¤X Σ, and
let Π↓ be an arbitrary permutation of (Φ〈−y〉↓, p→B, p). We show that the sequent
Π↓, Σ◦ 7→ C is provable in GX. By the induction hypothesis (2-2), we have

(i) Φ〈y〉↓ is not empty; or

(ii) (Φ〈−y〉↓, B) contains at least one implication.

We divide cases according to these conditions.
(Subcase A-1): Φ〈y〉 ↓ is not empty. In this case, Σ◦ 7→ C is an implication

because of Lemma 5.1(2). Then we have

p 7→ p

.... i.h.
Φ〈−y〉↓, B,Σ◦ 7→ C

Φ〈−y〉↓, p→B, p,Σ◦ 7→ C
(→ left)

.... (ex001)
Π↓, Σ◦ 7→ C.

(Subcase A-2): Φ〈−y〉↓= (Φ′↓,−→D). Then we have

p 7→ p

.... i.h.

Φ′↓, B,−→D,Σ◦ 7→ C

Φ′↓, p→B, p,
−→
D,Σ◦ 7→ C

(→ left)

.... (ex001)

Π ′↓,−→D,Σ◦ 7→ C.... (ex010)
Π↓, Σ◦ 7→ C
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where Π ′↓ is the sequence obtained from Π↓ by deleting an occurrence of
−→
D .

(Subcase A-3): B is an implication. Then we have

p 7→ p

.... i.h.

Φ〈−y〉↓,−→B ,Σ◦ 7→ C

Π↓, Σ◦ 7→ C.
(→left+) (Lemma 2.4)

(Case B): x = y. In this case, the condition (2-2) is shown by the induction
hypothesis and the fact that (Φ〈y〉↓, p→B, p) ¤X Σ implies (Φ〈y〉↓, B) ¤X Σ.

(Case 6): The last inference is

Γ ′ ⇒ (β, x) :
−→
A, ∆ Γ ′, (α∪β, x) :B ⇒ ∆

Γ ′, (α, x) :
−→
A→B ⇒ ∆.

(→ left 1)

By the induction hypotheses, there are extracts of the left and of the right upper
sequents. If the right-part of the extract of the left upper sequent is not (β, x) :

−→
A , or

the left-part of the extract of the right upper sequent does not contain (α∪β, x) :B,
then one of the extracts of the upper sequents is the required one of the lower
sequent. If the extracts of upper sequents are

Φ⇒ (β, x) :
−→
A , and

Ψ, (α∪β, x) :B ⇒ (γ, y) :C,

then the required extract is

Φ⊕ Ψ, (α, x) :
−→
A→B ⇒ (γ, y) :C

where the operator ⊕ was defined in the proof of Lemma 5.8, Case 6. The condi-
tion (1) is easily verified by the induction hypotheses. If C is an implication, the
condition (2) is shown by the induction hypotheses and the rules (→left), (ex001),
and (contraction). In the following, we assume C is atomic, and we will show the
condition (2-1). (The condition (2-2) is obvious.) We consider two cases according
to the values of x, y.

(Case A): x 6= y. Let Σ be an atom-normal multiset such that

(i) (Φ〈y〉 ⊕ Ψ〈y〉)↓ ¤X Σ,

and let Π↓ be an arbitrary permutation of ((Φ〈−y〉⊕Ψ〈−y〉)↓,−→A→B). We show that
the sequent Π↓, Σ◦ 7→ C is provable in GX. By (i) and the definitions of ⊕ and
¤X , we have ((Φ〈y〉↓), (Ψ〈y〉↓)) ¤X Σ. Then, by Lemma 5.6, we get atom-normal
multisets Θ and Λ that satisfy the following.

(ii) Φ〈y〉↓ ¤X Θ.

(iii) Ψ〈y〉↓ ¤X Λ.
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(iv) The rule (replace (Θ◦, Λ◦) by Σ◦) is derivable in GX.

Then we have

.... i.h.(2)

Φ〈−y〉↓, Φ〈y〉↓7→ −→
A

Φ〈−y〉↓, Θ◦ 7→ −→
A

(ii) and Lemma 5.5
.... (iii) and i.h.(2-1)

Ψ〈−y〉↓, B, Λ◦ 7→ C

(Π↓)+, Θ◦, Λ◦ 7→ C
(→left+) (Lemma 2.4)

.... (contraction)
Π↓, Θ◦, Λ◦ 7→ C

Π↓, Σ◦ 7→ C
(iv)

where (Π↓)+ is a permutation of (Φ〈−y〉↓, Ψ〈−y〉↓,−→A→B) such that (Π↓) is a con-
traction of it.

(Case B): x = y. Let Σ be an atom-normal multiset such that

(i) ((Φ〈y〉 ⊕ Ψ〈y〉)↓,−→A→B) ¤X Σ,

and let Π ↓ be an arbitrary permutation of (Φ〈−y〉 ⊕ Ψ〈−y〉)↓. We show that the
sequent Π↓, Σ◦ 7→ C is provable in GX. By (i) and the definitions of ⊕ and ¤X ,

we have (Φ〈y〉↓, (Ψ〈y〉↓,−→A→B)) ¤X Σ. Then we apply Lemma 5.6 to these, and we
get atom-normal multisets Θ and Λ that satisfy the following.

(ii) Φ〈y〉↓ ¤X Θ.

(iii) (Ψ〈y〉↓,−→A→B) ¤X Λ.

(iv) The rule (replace (Θ◦, Λ◦) by Σ◦) is derivable in GX.

The definition of ¤X and (iii) imply the fact

(v) (Ψ〈y〉↓, B) ¤X (
−→
A,Λ),

where (
−→
A,Λ) is atom-normal. Then we have

.... i.h.(2)

Φ〈−y〉↓, Φ〈y〉↓7→ −→
A

Φ〈−y〉↓, Θ◦ 7→ −→
A

(ii) and Lemma 5.5
.... (v) and i.h.(2-1)

Ψ〈−y〉↓,−→A,Λ◦ 7→ C

(Π↓)+, Θ◦, Λ◦ 7→ C
(cut+) (Lemma 2.4)

.... (contraction)
Π↓, Θ◦, Λ◦ 7→ C

Π↓, Σ◦ 7→ C
(iv)

where (Π↓)+ is a permutation of (Φ〈−y〉↓, Ψ〈−y〉↓) such that (Π↓) is a contraction of
it.
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(Case 7): The last inference is

Γ, ({a}, y) :A⇒ (α∪{a}, y) :B, ∆′

Γ ⇒ (α, x) :A→B, ∆′.
(→ right)

By the induction hypotheses, there is an extract of the upper sequent.
(Subcase 7-1): The right-part of the extract is not (α∪{a}, y) :B. In this case,

the left-part of the extract does not contain ({a}, y) :A because of the condition (1)
of the induction hypothesis and the Label Condition 1 on the inference rule. Then
the extract is just the required one of the lower sequent.

(Subcase 7-2): The right-part of the extract of the upper sequent is (α∪{a}, y) :B.
If X = E5 or E5M#, the extract is of the form

Φ, ({a}, y) :A⇒ (α∪{a}, y) :B

because of the condition (1) of the induction hypothesis and the Label Condition 1
on the inference rule. In this case, the required extract is

Φ⇒ (α, x) :A→B.

The conditions (1) are obvious by the induction hypothesis; and (2) is shown by the
induction hypothesis and the fact A ¤X A (in the case that B is atomic). If X =
S5I, the extract of the upper sequent is either the above one or of the form

Φ⇒ (α∪{a}, y) :B

where ({a}, y) :A 6∈ Φ. In any case, the required extract is also

Φ⇒ (α, x) :A→B.

In the former case, the proof of the required condition is the same as above. In the
latter case, the condition (1) is obvious by the induction hypothesis; and (2) is shown
by the induction hypothesis, the rule (we01) (in the case that B is an implication),
and the fact Φ〈y〉 = ∅ ¤S4 A (in the case that B is atomic).

(Case 8): X = E5M#, and the last inference is

Γ ′, (α∪β, x) :p⇒ ∆

Γ ′, (α, x) :p, (β, x) :p⇒ ∆.
(atomic minglement)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α∪β, x) :p, then we take the extract as the required
one of the lower sequent. If the extract of the upper sequent is of the form

Φ, (α∪β, x) :p⇒ (γ, y) :C,

then the required extract is

Φ, (α, x) :p, (β, x) :p⇒ (γ, y) :C.
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The condition (1) obviously holds by the induction hypothesis. If C is an implication,
the condition (2) is shown by the induction hypothesis, Lemma 2.5, and the rule
(ex001). In the following, we assume C is atomic, and we will show the condition
(2-1). (The condition (2-2) is obvious by the induction hypothesis.) We consider
two cases according to the values of x, y.

(Case A): x 6= y. Let Σ be an atom-normal multiset such that Φ〈y〉↓ ¤EM# Σ,
and let Π↓ be an arbitrary permutation of (Φ〈−y〉↓, p, p). We show that the sequent
Π↓, Σ◦ 7→ C is provable in GE5M#. By the induction hypothesis (2-2), we have

(i) Φ〈y〉↓ is not empty; or

(ii) (Φ〈−y〉↓, p) contains at least one implication.

We divide cases according to these conditions.
(Subcase A-1): Φ〈y〉 ↓ is not empty. In this case, Σ◦ 7→ C is an implication

because of Lemma 5.1(2). Then we have

.... i.h.
Φ〈−y〉↓, p, Σ◦ 7→ C

Φ〈−y〉↓, p, p, Σ◦ 7→ C
Lemma 2.5

.... (ex001)
Π↓, Σ◦ 7→ C.

(Subcase A-2): Φ〈−y〉↓= (Φ′↓,−→D). Then we have

.... i.h.

Φ′↓, p,−→D,Σ◦ 7→ C

Φ′↓, p, p,−→D,Σ◦ 7→ C
Lemma 2.5

.... (ex001)

Π ′↓,−→D,Σ◦ 7→ C.... (ex010)
Π↓, Σ◦ 7→ C

where Π ′↓ is the sequence obtained from Π↓ by deleting an occurrence of
−→
D .

(Case B): x = y. In this case, the condition (2-1) is shown by the induction
hypothesis and Lemma 5.7.

(Case 9): X = S5I, and the last inference is

Γ ′, (α∪β, x) :p⇒ ∆

Γ ′, (α, x) :p⇒ ∆.
(atomic heredity)

By the induction hypothesis, there is an extract of the upper sequent. If the left-part
of the extract does not contain (α∪β, x) :p, then we take the extract as the required
one of the lower sequent. If the the extract of the upper sequent is of the form

Φ, (α∪β, x) :p⇒ (γ, y) :C,
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then the required extract is

Φ, (α, x) :p⇒ (γ, y) :C.

The conditions (1) and (2) obviously hold by the induction hypothesis.

Theorem 5.11 Let X be one of E5, E5M#, and S5I. If LX ` ⇒ (∅, 0) :A, then
GX ` 7→ A.

Proof By the previous lemma.

6 Conclusion

By Theorems 2.1, 3.9, 4.2, 4.4, 4.6, 5.9, and 5.11, we get the main results of this
paper:

Theorem 6.1 (Main Theorem for E) For any formula A, the following five con-
ditions are equivalent.

• E ` A.
• GE ` 7→ A.

• LE ` ⇒ (∅, 0) :A.

• A is valid in any Linear Order E-model.

• A is valid in any E-model.

Theorem 6.2 (Main Theorem for EM#) For any formula A, the following five
conditions are equivalent.

• EM# ` A.
• GEM# ` 7→ A.

• LEM# ` ⇒ (∅, 0) :A.

• A is valid in any Linear Order E-model that satisfies the Mingle Con-
dition.

• A is valid in any E-model that satisfies the Mingle Condition.

Theorem 6.3 (Main Theorem for S4) For any formula A, the following five
conditions are equivalent.
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• S4 ` A.
• GS4 ` 7→ A.

• LS4 ` ⇒ (∅, 0) :A.

• A is valid in any Linear Order E-model that satisfies the Hereditary
Condition.

• A is valid in any E-model that satisfies the Hereditary Condition..

Theorem 6.4 (Main Theorem for E5) For any formula A, the following four
conditions are equivalent.

• E5 ` A.
• GE5 ` 7→ A.

• LE5 ` ⇒ (∅, 0) :A.

• A is valid in any Single Cluster E-model.

Theorem 6.5 (Main Theorem for E5M#) For any formula A, the following four
conditions are equivalent.

• E5M# ` A.
• GE5M# ` 7→ A.

• LE5M# ` ⇒ (∅, 0) :A.

• A is valid in any Single Cluster E-model that satisfies the Mingle
Condition.

Theorem 6.6 (Main Theorem for S5I) For any formula A, the following four
conditions are equivalent.

• S5I ` A.
• GS5I ` 7→ A.

• LS5I ` ⇒ (∅, 0) :A.

• A is valid in any Single Cluster E-model that satisfies the Hereditary
Condition.
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