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Abstract

The semilattice relevant logics ∪R, ∪T, ∪RW, and ∪TW (slightly different from the
orthodox relevant logics R, T, RW, and TW) are defined by “semilattice models” in which
conjunction and disjunction are interpreted in a natural way. In this paper, we prove the
equivalence between “LK-style” and “LJ-style” labelled sequent calculi for these logics. (LK-
style sequents have plural succedents, while they are singletons in LJ-style.) Moreover, using
this equivalence, we give the following. (1) New Hilbert-style axiomatizations for ∪R and
∪T. (2) Equivalence between two semantics (commutative monoid model and distributive
semilattice model) for the “contractionless” logics ∪RW and ∪TW.

1 Introduction

Relevant logics which are defined by “semilattice models” are called semilattice relevant logics;
they have been studied in the literature, e.g., [3, 4, 5, 8, 9]. A typical semilattice relevant logic ∪R
is defined to be the set of formulas that are valid in any ∪R-models, where a ∪R-model 〈I, ·, e〉 is a
semilattice with identity e (i.e., 〈I, ·, e〉 is an idempotent commutative monoid). This structure can
be considered to be a “structure of information”—I is a set of pieces of information, · is a binary
operator which combines two pieces of information, and e is an empty piece of information. The
notion “α |= A” (a formula A holds according to a piece α of information) is inductively defined
in a natural way:

α |= A→B ⇐⇒ ∀β ∈ I [(β |= A) ⇒ (α·β |= B)].

α |= A∧B ⇐⇒ (α |= A) and (α |= B).

α |= A∨B ⇐⇒ (α |= A) or (α |= B).

(In this paper, formulas are constructed by the connectives → (implication), ∧ (conjunction) and
∨ (disjunction).) We say that a formula A is valid in the model if and only if e |= A.

In addition to ∪R, the semilattice relevant logics ∪T, ∪RW, and ∪TW appear in this paper,
where they are obtained by modifying the definition of ∪R-model and/or the definition of “|=” as
follows. The definition of “α |= A→B” in ∪T/∪TW-models is described as

∀β º α [(β |= A) ⇒ (α·β |= B)]

where º is a binary relation on I, and ∪RW/∪TW-models are commutative monoids without the
idempotence postulate: α·α = α.

A point of semilattice models is that “α |= A ⇒ α·β |= A” is not always true, which reflects
the principle of relevant logics—adding an irrelevant assumption (β) makes a fall of truth value.
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This excludes “paradoxical” formulas, e.g., A→(B→A), while acceptable formulas such as A→A,
(A∧B)→A, A→(A∨B) and (A∧(B∨C))→((A∧B)∨C) are valid in any semilattice models. More-
over, there are some marginal formulas that correspond to some postulates on models. For example,
the formula (A→(A→B))→(A→B) corresponds to the idempotence postulate: this formula is not
in ∪RW or ∪TW while it is in ∪R and ∪T. (Since this formula is called contraction, the logics
∪RW and ∪TW are also called contractionless logics.) These examples show an advantage of
semilattice models: various features of relevant logics are represented by simple devices of models.

The “orthodox” relevant logics (see, e.g., [1, 2]) and the semilattice relevant logics coincide in
the {→,∧}-fragments, but they have a slight difference if the connective ∨ exists. For example,
it is known ([9]) that R→∧∨ ( ∪R where R→∧∨ is the set of provable formulas in the {→,∧,∨}-
fragment of the well-known relevant logic R. The orthodox relevant logics are usually defined by
their proof systems, and models of them are relatively complicated. On the other hand semilattice
relevant logics are defined by simple models; then development of proof theoretical studies is a
natural requirement for semilattice relevant logics. This paper is a study in such a direction.

The results of this paper are summarized as follows.
1. Equivalence between the LK-style and LJ-style labelled sequent calculi. For the

logic ∪R, there is a cut-free labelled sequent calculus, called LK∪R, where the labels α, β, . . . are
finite sets, and the both sides of a sequent are multisets of labelled formulas.

Axioms of LK∪R: α :A⇒ α :A

Inference rules of LK∪R:

• The weakening/contraction rules for both side. For example:

Γ ⇒ ∆
α :A,Γ ⇒ ∆

(weakening left)
Γ ⇒ ∆,α :A,α :A
Γ ⇒ ∆,α :A

(contraction right)

• Rules for →:

Γ ⇒ ∆,β :A α∪β :B,Π ⇒ Σ

α :A→B,Γ,Π ⇒ ∆,Σ
(→ left)

{a} :A,Γ ⇒ ∆,α∪{a} :B
Γ ⇒ ∆,α :A→B

(→ right)

where a does not appear in the lower sequent of “→ right”.

• Rules for ∧ and ∨. For example,

α :A,Γ ⇒ ∆ α :B,Γ ⇒ ∆

α :A∨B,Γ ⇒ ∆
(∨ left)

Γ ⇒ ∆,α :A
Γ ⇒ ∆,α :A∨B (∨ right)

(Rules for ∧ are the dual forms of the ones for ∨.)

This system is known to be complete in the following sense: A ∈ ∪R if and only if LK∪R ` ⇒ ∅ :A
(i.e., the sequent ⇒ ∅ :A is provable in LK∪R). On the other hand, there is another labelled
sequent calculus, called LJ∪R, that is defined from LK∪R by imposing the restriction that the
right-hand side of each sequent is a singleton. (The names LK∪R and LJ∪R come from the
well-known sequent calculi LK for the classical logic and LJ for the intuitionistic logic, where LK
and LJ are equivalent to the label-free parts of LK∪R and LJ∪R, respectively.) In this paper,
we prove that LK∪R is a conservative extension of LJ∪R (although LK is not a conservative
extension of LJ); therefore the following three conditions are shown to be equivalent: (1) A ∈ ∪R.
(2) LK∪R ` ⇒ ∅ :A. (3) LJ∪R ` ⇒ ∅ :A. Moreover, similar results for ∪T, ∪RW, and ∪TW are
proved. These are shown with a delicate transformation of sequent-proofs. Note that these results
were already stated in [5], but the proof there was wrong (see the beginning of Section 3).

2. Hilbert-style axiomatization of ∪R/∪T. We prove that Hilbert-style systems for ∪R
and ∪T are obtained from the orthodox systems R and T by adding an extra inference rule. In
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[3], such a result for ∪R has been proved where the extra rule is slightly different from this paper.
Our extra rule corresponds to the “∨ left” rule of LJ∪R, and our proof method is “translation
of LJ∪R(∪T)-sequents into formulas”, which is clearer than the method of [3]. For ∪T, no other
completeness proof for Hilbert-style systems has been known. Unfortunately we do not yet get
such a result for ∪RW/∪TW.

3. Equivalence between the commutative monoid semantics and the distributive
semilattice semantics for ∪RW/∪TW. In [4, 5, 8], two kinds of models are introduced for
∪RW/∪TW: one is “commutative monoid” and the other is “distributive semilattice”. In this
paper we introduce labelled sequent calculi for both semantics. Then, by the analysis of these
systems, we show the equivalence of the two semantics in the sense that a formula A is valid in
any commutative monoid models if and only if A is valid in any distributive semilattice models.
This equivalence for ∪RW and for the {→,∧}-fragment of ∪TW have been proved in [4, 8] (where
the proof methods are different from this paper), but the result for ∪TW with the connective ∨
has not been proved so far.

Thus our results are classified into three, where the first one is a fundamental result on the proof
theory of the semilattice relevant logics and the second and third ones solve some open problems,
making good use of the first result. We hope that some more important property on the semilattice
relevant logics will be shown by virtue of the fundamental result; for example, a decision procedure
for ∪R(∪T) with the cut-free system LJ∪R(∪T) is an attractive goal. (It is open whether they
are decidable or not.) We also hope to extend these results to other relevant logics, for example,
E and the neighbors appearing in [6].

The structure of this paper is as follows. In Section 2, we present the definitions of the semi-
lattice relevant logics ∪R and ∪T with the semilattice models. Then we introduce the labelled
sequent calculi LK∪R and LK∪T, and we prove the completeness of them. In Section 3, we
introduce the labelled sequent calculi LJ∪R and LJ∪T, and we prove that LK∪R (or LK∪T) is
a conservative extension of LJ∪R (or LJ∪T, respectively). In Section 4, we show that LJ∪R and
LJ∪T can be changed into systems without the “weakening” rule. These systems are called LI∪R
and LI∪T, which are proved, in Section 5, to be sound with respect to the semilattice models.
The results of Sections 2–5 imply the Main Theorem 5.4, which claims the equivalence between
the conditions: A ∈ X, LKX ` ⇒ ∅ :A, LJX ` ⇒ ∅ :A, and LIX ` ⇒ ∅ :A, for X ∈ {∪R, ∪T}.
In Section 6, we present Hilbert-style systems for ∪R and ∪T, and we show the soundness and
completeness of them. In Section 7, we investigate the logics ∪RW and ∪TW. We introduce two
kinds of labelled sequent calculi which reflect the two kinds of models (commutative monoid and
distributive semilattice). All the results of Sections 2–5 are translated for ∪RW/∪TW, and then
we obtain the equivalence between the two semantics.

2 Labelled sequent calculi and completeness

In this section we present the definitions of semilattice models and labelled sequent calculi for ∪R
and ∪T, and we prove the completeness of these calculi. (This completeness result appeared in
[5].)

Formulas are constructed from propositional variables and the binary connectives →, ∧ and ∨.
We assume that the set of propositional variables is countable. We use the metavariables p, q, . . .
for propositional variables, and A,B, . . . for formulas.

A pair M = 〈〈I, ·, e〉, V 〉 is said to be a ∪R-model if it satisfies the following conditions.

• 〈I, ·, e〉 is an idempotent commutative monoid (a semilattice with identity e); that is, I is a
non-empty set, · is a binary operator on I, and e ∈ I such that (α·β)·γ = α·(β·γ), α·β = β·α,
α·α = α, and α·e = α hold for any α, β, γ ∈ I.
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• V is a subset of I ×Var, where Var is the set of propositional variables.

For an element α in I and a formula A, we define a notion

α |=M A

inductively as follows.

α |=M p ⇐⇒ (α, p) ∈ V.
α |=M A→B ⇐⇒ ∀β ∈ I [

(β |=M A) ⇒ (α·β |=M B)
]
.

α |=M A∧B ⇐⇒ (α |=M A) and (α |=M B).

α |=M A∨B ⇐⇒ (α |=M A) or (α |=M B).

We say that a formula A is valid in the model M if and only if e |=M A.
A ∪T-model is obtained from a ∪R-model by adding a binary relation on the base set. A pair

M = 〈〈I, ·, e,¹〉, V 〉 is said to be a ∪T-model if the ¹-free part is a ∪R-model and ¹ is a transitive
binary relation on I such that e ¹ α and (α ¹ β ⇒ α·γ ¹ β·γ). The notion α |=M A is defined
like ∪R-models where the clause for implication is changed as

α |=M A→B ⇐⇒ ∀β º α
[
(β |=M A) ⇒ (α·β |=M B)

]
.

The logics ∪R and ∪T are defined to be the sets of formulas:
∪R = {A | A is valid in any ∪R-model.}
∪T = {A | A is valid in any ∪T-model.}

We introduce labelled sequent calculi for ∪R and ∪T. A label is a finite set of positive integers.
If α is a label and A is a formula, then the expression α :A is called a labelled formula. We use
the letters α, β, . . . to represent labels, and Γ,∆, . . . for multisets of labelled formulas. As usual,
an expression, e.g. (Γ,∆, α :A, β :B) denotes the multiset Γ ∪∆ ∪ {α :A} ∪ {β :B} where ∪ is the
“multiset union”. The set of positive integers appearing in the labels Γ is denoted by L(Γ ); that
is to say, L(Γ ) is the union of labels in Γ .

An expression Γ ⇒ ∆ is called a labelled sequent where Γ and ∆ are finite multiset of labelled
formulas (Γ and ∆ are called the antecedent and succedent, respectively). Intuitively, a label α
corresponds to an element of the base set of a model M , and the meaning of a labelled sequent

α :A, . . . , αm :Am ⇒ β :B, . . . , βn :Bn

is, like the sequent calculus LK for classical logics, the following:

(α 6|=M A) or · · · or (αm 6|=M Am) or (β |=M B) or · · · or (βn |=M Bn).

A (cut-free) labelled sequent calculus LK∪R is defined as follows. Axioms of LK∪R are

α :A⇒ α :A.

Inference rules of LK∪R are “weakening left/right”, “contraction left/right”, “→ left/right”, “∧
left/right”, and “∨ left/right” as follows:

Γ ⇒ ∆
α :A, Γ ⇒ ∆

(weakening left) Γ ⇒ ∆
Γ ⇒ ∆, α :A

(weakening right)

α :A, α :A, Γ ⇒ ∆

α :A, Γ ⇒ ∆
(contraction left)

Γ ⇒ ∆, α :A, α :A
Γ ⇒ ∆, α :A

(contraction right)
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Γ ⇒ ∆, β :A α∪β :B, Π ⇒ Σ

α :A→B, Γ,Π ⇒ ∆,Σ
(→ left)

{a} :A, Γ ⇒ ∆, α∪{a} :B
Γ ⇒ ∆, α :A→B

(→ right) with the proviso:

(Label Condition): a 6∈ L(Γ,∆) ∪ α (i.e., a does not appear in the lower
sequent).

α :A, Γ ⇒ ∆

α :A∧B, Γ ⇒ ∆
(∧ left)

α :B, Γ ⇒ ∆

α :A∧B, Γ ⇒ ∆
(∧ left)

Γ ⇒ ∆, α :A Γ ⇒ ∆, α :B
Γ ⇒ ∆, α :A∧B (∧ right)

α :A, Γ ⇒ ∆ α :B, Γ ⇒ ∆

α :A∨B, Γ ⇒ ∆
(∨ left)

Γ ⇒ ∆, α :A
Γ ⇒ ∆, α :A∨B (∨ right)

Γ ⇒ ∆, α :B
Γ ⇒ ∆, α :A∨B (∨ right)

Note that the rules

Γ, α :A, β :B, ∆⇒ Π

Γ, β :B, α :A, ∆⇒ Π
(exchange left)

Γ ⇒ ∆, α :A, β :B, Π
Γ ⇒ ∆, β :B, α :A, Π

(exchange right)

are implicitly available because the antecedent and succedent are multisets.
A labelled sequent calculus LK∪T is obtained from LK∪R by replacing “→ left/right” rules as

follows, where max(α) is the numerically largest element in α if α is not empty, and max(∅) = 0.

Γ ⇒ ∆, β :A α∪β :B, Π ⇒ Σ

α :A→B, Γ,Π ⇒ ∆,Σ
(→ left) with the proviso:

(Label Condition): max(α) ≤ max(β).

{a} :A, Γ ⇒ ∆, α∪{a} :B
Γ ⇒ ∆, α :A→B

(→ right) with the proviso:

(Label Condition): a 6∈ L(Γ,∆) ∪ α, and max(α) < a.

The symbol “`” represents provability; for example, “LK∪R ` Γ ⇒ ∆” means “Γ ⇒ ∆ is
provable in LK∪R.”

We show the completeness of these calculi in the sense that LK∪R(LK∪T) ` ⇒ ∅ :A if A ∈
∪R(∪T).

The set of all the finite set of positive integers (i.e., the set of all the labels) will be denoted by
Label. If V is a subset of Label×Var, then the pairs 〈〈Label,∪, ∅〉, V 〉 and 〈〈Label,∪, ∅,¹〉, V 〉
are said to be a label ∪R-model and a label ∪T-model where the binary relation ¹ is defined by

α ¹ β ⇔ max(α) ≤ max(β).

5



(It is easy to verify that label models satisfy the definitions of ∪R/∪T-models.) We say that a
labelled formula α :A is true (or false) in a label model M if α |=M A (or α 6|=M A, respectively).

A pair 〈Γ,∆〉 of multisets of labelled formulas is said to be ∪R-saturated if the following six
conditions hold for any formulas A,B and any labels α, β.

(1) If α :A→B ∈ Γ , then [β :A ∈ ∆ or α∪β :B ∈ Γ ].

(2) If α :A→B ∈ ∆, then [{a} :A ∈ Γ and α∪{a} :B ∈ ∆ for some a > max(α)].

(3) If α :A∧B ∈ Γ , then [α :A ∈ Γ and α :B ∈ Γ ].

(4) If α :A∧B ∈ ∆, then [α :A ∈ ∆ or α :B ∈ ∆].

(5) If α :A∨B ∈ Γ , then [α :A ∈ Γ or α :B ∈ Γ ].

(6) If α :A∨B ∈ ∆, then [α :A ∈ ∆ and α :B ∈ ∆].

Similarly “∪T-saturated” is defined by these clauses where (1) is changed into the following.

(1) If [α :A→B ∈ Γ and max(α) ≤ max(β)], then [β :A ∈ ∆ or α∪β :B ∈ Γ ].

Note that the condition “a > max(α)” in the clause (2) is not essential for “∪R-saturated”; we
adopt this clause only for the unity of the arguments for ∪R and ∪T.

Lemma 2.1 If LKX 6` Γ ⇒ ∆, then there exists a label X-model M such that any labelled formula
in Γ is true in M and any labelled formula in ∆ is false in M , for X = ∪R and ∪T.

Proof We call any pair 〈ϕ :F, ψ〉 a seed for saturation where ϕ :F is a labelled formula and ψ is
a label. Since both the set of finite sets of positive integers and the set of formulas are countable,
we can enumerate all seeds for saturations as

〈ϕ :F, ψ〉, 〈ϕ :F, ψ〉, . . .
so that every seed occurs infinitely often in the enumeration. Using this enumeration, we define a
sequence Γi ⇒ ∆i (i = 0, 1, 2, . . .) of unprovable labelled sequents as follows.

[Step 0] (Γ ⇒ ∆) = (Γ ⇒ ∆)

[Step k] Suppose that Γk− ⇒ ∆k− is already defined and is not provable in LKX.
Then we define Γk ⇒ ∆k according to the seed 〈ϕk :Fk, ψk〉.
(Case 1): Fk is of the form A→B and ϕk :A→B ∈ Γk−; moreover, max(ϕk) ≤ max(ψk)
if X = ∪T. In this case,

(Γk ⇒ ∆k) =





(Γk− ⇒ ∆k−, ψk :A) (if this labelled sequent is
not provable in LKX),

(ϕk∪ψk :B, Γk− ⇒ ∆k−) (otherwise).

The fact LKX 6` Γk ⇒ ∆k is guaranteed by the rules “→ left” and contraction.

(Case 2): Fk is of the form A→B and ϕk : A→B ∈ ∆k−. In this case, we take
an integer a such that a > max(ϕk) and a 6∈ L(Γk−,∆k−). (Since the elements of
L(Γk−,∆k−) are finite, we can take such a.) Then we define

(Γk ⇒ ∆k) = ({a} :A, Γk− ⇒ ∆k−, ϕk∪{a} :B).

The fact LKX 6` Γk ⇒ ∆k is guaranteed by the rules “→ right” and contraction.

(Case 3): Fk is of the form A∧B and ϕk :A∧B ∈ Γk−. In this case,

(Γk ⇒ ∆k) = (ϕk :A, ϕk :B, Γk− ⇒ ∆k−).
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The fact LKX 6` Γk ⇒ ∆k is guaranteed by the rules “∧ left” and contraction.

(Case 4): Fk is of the form A∧B and ϕk :A∧B ∈ ∆k−. In this case,

(Γk ⇒ ∆k) =





(Γk− ⇒ ∆k−, ϕk :A) (if this labelled sequent is not
provable in LKX),

(Γk− ⇒ ∆k−, ϕk :B) (otherwise).

The fact LKX 6` Γk ⇒ ∆k is guaranteed by the rules “∧ right” and contraction.

(Case 5): Fk is of the form A∨B and ϕk :A∨B ∈ Γk−. This case is similar to the case
4.

(Case 6): Fk is of the form A∨B and ϕk :A∨B ∈ ∆k−. This case is similar to the case
3.

(Case 7): None of the above conditions for (1)–(6) hold. Then

(Γk ⇒ ∆k) = (Γk− ⇒ ∆k−).

This completes the construction of the infinite sequence Γi ⇒ ∆i (i = 0, 1, 2, . . .). Then we define
Γ∞ =

⋃∞
i= Γi and ∆∞ =

⋃∞
i=∆i, and we show the following: (1) 〈Γ∞,∆∞〉 is X-saturated. (2)

Γ∞ ∩∆∞ = ∅.

[Proof of (1)] We verify the clause (1) of the definition of X-saturatedness (the other clauses are
similar). Suppose α :A→B ∈ Γ∞; that is, α :A→B ∈ Γp for some p. Since the seed 〈α :A→B, β〉
occurs infinitely often in the enumeration, there is a natural number k ≥ p that “hits” the above
construction of Γk ⇒ ∆k; that is, there is a natural number k such that β :A ∈ ∆k or α∪β :B ∈ Γk.

[Proof of (2)] If there is a labelled formula α :A in Γ∞ ∩∆∞, then there is a natural number k
such that α :A ∈ Γk ∩∆k, and this contradicts the fact LKX 6` Γk ⇒ ∆k.

Now we define a label X-model M = 〈〈Label,∪, ∅(,¹)〉, V 〉 by

V = {(α, p) | α :p ∈ Γ∞}.

Then we have the following:

• If α :A ∈ Γ∞, then it is true in M .

• If α :A ∈ ∆∞, then it is false in M .

This is proved by induction on the complexity of the formula A, using (1) and (2) above. Since
Γ ⊆ Γ∞ and ∆ ⊆ ∆∞, this implies that M is the required model.

Theorem 2.2 (Completeness of LK∪R and LK∪T) If A ∈ X, then LKX ` ⇒ ∅ :A, for X ∈
{∪R, ∪T}.

Proof By the previous Lemma 2.1 where Γ = ∅ and ∆ = {∅ :A}.
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3 LJ-style systems

We define labelled sequent calculi LJX, for X = ∪R and ∪T, to be the systems obtained from
LKX by imposing the restriction that the succedent of each labelled sequent is a singleton (recall
that a succedent is a multiset of labelled formulas).

Axioms of LJX: α :A⇒ α :A.

Inference rules of LJX:

Γ ⇒ τ :F
α :A, Γ ⇒ τ :F

(weakening)
α :A, α :A, Γ ⇒ τ :F

α :A, Γ ⇒ τ :F
(contraction)

Γ ⇒ β :A α∪β :B, Γ ⇒ τ :F
α :A→B, Γ ⇒ τ :F

(→ left) with the proviso:

(Label Condition): max(α) ≤ max(β) if X = ∪T.

{a} :A, Γ ⇒ α∪{a} :B
Γ ⇒ α :A→B

(→ right) with the proviso:

(Label Condition): a 6∈ L(Γ )∪α if X = ∪R. a 6∈ L(Γ )∪α and max(α) < a
if X = ∪T.

α :A, Γ ⇒ τ :F
α :A∧B, Γ ⇒ τ :F

(∧ left)
α :B, Γ ⇒ τ :F

α :A∧B, Γ ⇒ τ :F
(∧ left)

Γ ⇒ α :A Γ ⇒ α :B
Γ ⇒ α :A∧B (∧ right)

α :A,Γ ⇒ τ :F α :B, Γ ⇒ τ :F
α :A∨B,Γ ⇒ τ :F

(∨ left)

Γ ⇒ α :A
Γ ⇒ α :A∨B (∨ right) Γ ⇒ α :B

Γ ⇒ α :A∨B (∨ right)

Note that the two forms of “→ left”

Γ ⇒ β :A α∪β :B, Γ ⇒ τ :F
α :A→B, Γ ⇒ τ :F and

Γ ⇒ β :A α∪β :B, Π ⇒ τ :F
α :A→B, Γ,Π ⇒ τ :F

are mutually derivable with the help of the weakening and the contraction rules. We here adopt
the former because of a technical reason—the upper sequents are uniquely determined if the lower
sequent is given and if the “principal labelled formula” α :A→B is identified.

In this section we show that “LKX ` Γ ⇒ α :A” implies “LJX ` Γ ⇒ α :A” (Theorem 3.6);
in other words, LKX is a conservative extension of LJX. (This fact is not surprising because the
{→,∧,∨}-fragments of most relevant logics are weaker than the intuitionistic logic.) To show this
claim, one may try to prove (one of) the following assertions by induction on the LKX-proof of
Γ ⇒ ∆.

• If LKX ` Γ ⇒ ∆, then LJX ` Γ ⇒ α :A where A is the disjunction of all the formulas in
∆.
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• If LKX ` Γ ⇒ ∆, then LJX ` Γ ⇒ α :A for some α :A ∈ ∆.

However, the former does not work because of the difference of ∆ in labels (e.g., we cannot choose
an adequate α such that α :F∨G represents ∆ when ∆ = (ϕ :F, ψ :G) and ϕ 6= ψ); and the latter
is wrong—there is a counterexample:

LKX ` α :p∨p ⇒ α :p, α :p.

LJX 6` α :p∨p ⇒ α :pi for i = 1, 2.

(Remark: This is also a counterexample to Fact 6 of [5].) Then we will take another way.

We define labelled sequent calculi LMX (X = ∪R, ∪T), which are intermediate systems
between LKX and LJX, as follows.

Axioms: α :A⇒ α :A.

Inference rules:

Γ ⇒ ∆
α :A, Γ ⇒ ∆

(weakening left) Γ ⇒ ∆
Γ ⇒ ∆, α :A

(weakening right)

α :A, α :A, Γ ⇒ ∆

α :A, Γ ⇒ ∆
(contraction left)

Γ ⇒ ∆, α :A, α :A
Γ ⇒ ∆, α :A

(contraction right)

Γ ⇒ β :A α∪β :B, Γ ⇒ ∆

α :A→B, Γ ⇒ ∆
(→ left) with the proviso:

(Label Condition): max(α) ≤ max(β) if X = ∪T.

{a} :A, Γ ⇒ α∪{a} :B
Γ ⇒ α :A→B

(→ right) with the proviso:

(Label Condition): a 6∈ L(Γ )∪α if X = ∪R. a 6∈ L(Γ )∪α and max(α) < a
if X = ∪T.

α :A, Γ ⇒ ∆

α :A∧B, Γ ⇒ ∆
(∧ left)

α :B, Γ ⇒ ∆

α :A∧B, Γ ⇒ ∆
(∧ left)

Γ ⇒ α :A Γ ⇒ α :B
Γ ⇒ α :A∧B (∧ right)

α :A, Γ ⇒ ∆ α :B, Γ ⇒ ∆

α :A∨B, Γ ⇒ ∆
(∨ left)

Γ ⇒ α :A
Γ ⇒ α :A∨B (∨ right) Γ ⇒ α :B

Γ ⇒ α :A∨B (∨ right)

That is to say, LMX is obtained from LKX with the modification that “→/∧/∨ right” rules and
the left upper sequent of “→ left” rule are LJX-style. Then we will show

(A) if LKX ` Γ ⇒ ∆, then LMX ` Γ ⇒ ∆ ; and
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(B) if LMX ` Γ ⇒ α :A, then LJX ` Γ ⇒ α :A.

The claim (B) is easily shown by the following, which can be proved by induction on the LMX-
proofs.

Theorem 3.1 If LMX ` Γ ⇒ ∆ and ∆ = {α :A, . . . , α :A} (a non-empty multisets consisting
only of α :A), then LJX ` Γ ⇒ α :A, where X ∈ {∪R, ∪T}.

The claim (A) is hard to prove. For this, we will show that each inference rule of LKX is
admissible in LMX. For example, suppose there are two LMX-proofs P of (Γ ⇒ ∆,β :A) and Q
of (α∪β :B,Π ⇒ Σ). To show the admissibility of the LKX-rule

Γ ⇒ ∆, β :A α∪β :B, Π ⇒ Σ

α :A→B, Γ,Π ⇒ ∆,Σ,
(→ left)

we should construct an LMX-proof of this last sequent. The essence of this construction is
explained as follows. First we make a proof P ′ by dropping some inferences from P so that the
last sequent is of the form Γ ′ ⇒ β :A. Then the desired LMX-proof is

.... P
′

Γ ′ ⇒ β :A

.... Q
α∪β :B, Π ⇒ Σ

α :A→B, Γ ′,Π ⇒ Σ
(weakening and → left)

.... R
α :A→B, Γ,Π ⇒ ∆,Σ

where R corresponds to the dropped inferences by which the sequent Γ,Φ⇒ ∆,Ψ is derived from
the sequent Γ ′, Φ⇒ Ψ for arbitrary Φ, Ψ . (A similar technique appears in a cut-elimination pro-
cedure for E→ in [7].) A typical example is that P is

β :C ⇒ β :C β :A⇒ β :A
β :C∨A⇒ β :C, β :A

(weakening and ∨ left)

(Γ = β :C∨A, and∆ = β :C), P ′ is an axiom β :A⇒ β :A, and R consists of the axiom β :C ⇒ β :C
and the rules weakening and “∨ left”. The Main Lemma 3.3, which is a central technical result in
this paper, and Lemma 3.4 will give the precise description of this construction.

Now we begin the proof in detail.

We define a relation - between two multisets of labelled formulas by

Γ - ∆ ⇔ ∃(α :A) ∈ Γ, ∃(β :B) ∈ ∆ [α ⊆ β].

Lemma 3.2 If LMX ` Γ,Π ⇒ ∆ and Π 6- ∆, then LMX ` Γ ⇒ ∆, where X ∈ {∪R, ∪T}.
Proof By induction on the LMX-proof of Γ,Π ⇒ ∆. We divide cases according to the last
inference of the proof, and here we show some nontrivial cases.

(Case 1): The last inference is

Γ ′,Π ⇒ β :A α∪β :B,Γ ′,Π ⇒ ∆

α :A→B,Γ ′,Π ⇒ ∆
(→ left)

and Γ = (α :A→B,Γ ′).
(Subcase 1-1): Π 6- β :A. In this case, we have

.... i.h.
Γ ′ ⇒ β :A

.... i.h.
α∪β :B,Γ ′ ⇒ ∆

α :A→B,Γ ′ ⇒ ∆
(→ left)
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where the Label Condition still holds when X = ∪T.
(Subcase 1-2): Π - β :A. In this case, α∪β :B 6- ∆ holds (and therefore (α∪β :B,Π) 6- ∆

holds) because of the condition Π 6- ∆. Then we have

.... i.h.
Γ ′ ⇒ ∆

α :A→B,Γ ′ ⇒ ∆.
(weakening)

(Case 2): The last inference is

Γ,Π ′ ⇒ β :A Γ,α∪β :B,Π ′ ⇒ ∆

Γ,α :A→B,Π ′ ⇒ ∆
(→ left)

and Π = (α :A→B,Π ′). In this case, (α∪β :B,Π ′) 6- ∆ holds, and LMX ` Γ ⇒ ∆ is obtained
by the induction hypothesis.

(Case 3): The last inference is

{a} :A,Γ,Π ⇒ α∪{a} :B
Γ,Π ⇒ α :A→B

(→ right)

and ∆ = α :A→B. In this case, Π 6- α∪{a} :B holds because of the Label Condition and Π 6- ∆.
Then we have .... i.h.

{a} :A,Γ ⇒ α∪{a} :B
Γ ⇒ α :A→B

(→ right)

where the Label Condition still holds.

Lemma 3.3 (Main Lemma) Let X ∈ {∪R, ∪T}. Suppose that LMX ` Γ,Π ⇒ ∆,Σ where
Π 6- ∆ and Σ 6= ∅. Then, at least one of the following two conditions holds:

(1) LMX ` Γ ⇒ ∆.

(2) There exist multisets Γ, Γ, . . . , Γn for some n ≥ 1 such that

(2-1) L(Γ, . . . , Γn) ⊆ L(Γ,∆);
(2-2) LMX ` Γi,Π ⇒ Σ, for i = 1, . . . , n; and
(2-3) the inference

Γ, Φ⇒ Ψ Γ, Φ⇒ Ψ · · · Γn, Φ⇒ Ψ

Γ, Φ⇒ Ψ,∆
R〈Γ;···;Γn〉
〈Γ 〉〈∆〉

is derivable in LMX; that is, for arbitrary Φ and Ψ , there is an LMX-
derivation from Γi, Φ⇒ Ψ (i = 1, . . . , n) to Γ,Φ⇒ Ψ,∆.

Proof The pair 〈Γ ;∆〉 will be called the dropped part, and the list 〈Γ; . . . ;Γn〉 will be called an
essential antecedents list. Roughly speaking, the condition (2) expresses that the list 〈Γ; . . . ;Γn〉
is an essence of the dropped part 〈Γ ;∆〉.

The proof of this lemma is done by induction on the LMX-proof of Γ ;Π ⇒ ∆;Σ. (We will
use semicolons in a sequent to indicate the boundary between the dropped part and the remaining
part.) We divide cases according to the last inference of the proof.

(Case 1): Γ ;Π ⇒ ∆;Σ is an axiom α :A; ⇒ ;α :A where Γ = Σ = {α :A} and Π = ∆ = ∅. In
this case, the condition (2) holds because 〈α :A〉 is an essential antecedents list (n = 1).

(Case 2): Γ ;Π ⇒ ∆;Σ is an axiom ;α :A⇒ ;α :A where Π = Σ = {α :A} and Γ = ∆ = ∅.
In this case, the condition (2) holds because 〈∅〉 is an essential antecedents list (n = 1).
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(Case 3): The last inference is

Γ ′,Π ⇒ ∆,Σ

α :A,Γ ′; Π ⇒ ∆; Σ
(weakening left)

where Γ = (α :A,Γ ′). The induction hypothesis for the upper sequent Γ ′;Π ⇒ ∆;Σ is available:
(1) LMX ` Γ ′ ⇒ ∆; or (2) there is an essential antecedents list for the upper sequent. In (1),
we have LMX ` Γ ⇒ ∆ by the weakening rule. In (2), it is easy to show that the list is also an
essential antecedents list for Γ ;Π ⇒ ∆;Σ.

(Case 4): The last inference is

Γ,Π ′ ⇒ ∆,Σ

Γ ; α :A,Π ′ ⇒ ∆; Σ
(weakening left)

whereΠ = (α :A,Π ′). SinceΠ ′ 6- ∆, the induction hypothesis for the upper sequent Γ ;Π ′ ⇒ ∆;Σ
is available: (1) LMX ` Γ ⇒ ∆; or (2) there is an essential antecedents list for the upper sequent.
(1) is the required condition. In (2), it is easy to show that the list is also an essential antecedents
list for Γ ;Π ⇒ ∆;Σ.

(Case 5): The last inference is

Γ,Π ⇒ ∆′, Σ
Γ ; Π ⇒ ∆′, α :A; Σ

(weakening right)

where ∆ = (∆′, α :A). This case is similar to the Case 3. (Note that Π 6- ∆′.)
(Case 6): The last inference is

Γ,Π ⇒ ∆,Σ′

Γ ; Π ⇒ ∆; Σ′, α :A
(weakening right)

where Σ = (Σ′, α : A). If Σ′ 6= ∅, this is similar to the Case 4. If Σ′ = ∅, the condition (1)
LMX ` Γ ⇒ ∆ holds since Lemma 3.2.

(Case 7): The last inference is

α :A,α :A,Γ ′,Π ⇒ ∆,Σ

α :A,Γ ′; Π ⇒ ∆; Σ
(contraction left)

where Γ = (α :A,Γ ′). The induction hypothesis for the upper sequent α :A,α :A,Γ ′;Π ⇒ ∆;Σ
is available: (1) LMX ` α :A,α :A,Γ ′ ⇒ ∆; or (2) there is an essential antecedents list for the
upper sequent. In (1), we have LMX ` Γ ⇒ ∆ by the contraction rule. In (2), it is easy to show
that the list is also an essential antecedents list for Γ ;Π ⇒ ∆;Σ.

(Case 8): The last inference is

Γ, α :A,α :A,Π ′ ⇒ ∆,Σ

Γ ; α :A,Π ′ ⇒ ∆; Σ
(contraction left)

where Π = (α :A,Π ′). The induction hypothesis for the upper sequent Γ ;α :A,α :A,Π ′ ⇒ ∆;Σ is
available: (1) LMX ` Γ ⇒ ∆; or (2) there is an essential antecedents list for the upper sequent.
(1) is the required condition. In (2), it is easy to show that the list is also an essential antecedents
list for Γ ;Π ⇒ ∆;Σ.

(Case 9): The last inference is

Γ,Π ⇒ ∆′, α :A,α :A,Σ
Γ ; Π ⇒ ∆′, α :A; Σ

(contraction right)

where ∆ = (∆′, α :A). This case is similar to the Case 7.
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(Case 10): The last inference is

Γ,Π ⇒ ∆,Σ′, α :A,α :A
Γ ; Π ⇒ ∆; Σ′, α :A

(contraction right)

where Σ = (Σ′, α :A). This case is similar to the Case 8.
(Case 11): The last inference is

.... P
Γ ′,Π ⇒ β :A

.... Q
α∪β :B,Γ ′,Π ⇒ ∆,Σ

α :A→B,Γ ′; Π ⇒ ∆; Σ
(→ left)

where Γ = (α :A→B,Γ ′).
(Subcase 11-1): {α∪β :B} - ∆. In this case, we have Π 6- {β :A} because otherwise Π - ∆

holds. Then we have

(†) LMX ` Γ ′ ⇒ β :A

by applying the Lemma 3.2 to P . On the other hand, the induction hypothesis is available for Q
in which the dropped part is 〈α∪β :B,Γ ′;∆〉. Thus we have

(1) LMX ` α∪β :B,Γ ′ ⇒ ∆; or

(2) there is an essential antecedents list 〈Γ; . . . ;Γn〉 for α∪β :B,Γ ′;Π ⇒ ∆;Σ.

In (1), we have LMX ` Γ ⇒ ∆ by (†) and the rule “→ left”. In (2), the list is also an essential
antecedents list for Γ ;Π ⇒ ∆;Σ. This is proved as follows. (2-1) L(Γ, . . . , Γn) ⊆ L(Γ,∆) is
verified by the induction hypothesis and the condition {α∪β :B} - ∆. (2-2) LMX ` Γi,Π ⇒ Σ

(i = 1, . . . , n) is just the induction hypothesis. (2-3) The derivability of R〈Γ;···;Γn〉
〈Γ 〉〈∆〉 is shown by

.... (†)
Γ ′ ⇒ β :A

Γi, Φ⇒ Ψ (i = 1, . . . , n)
.... R

〈Γ;···;Γn〉
〈α∪β:B,Γ ′〉〈∆〉 (i.h.)

α∪β :B,Γ ′, Φ⇒ Ψ,∆

α :A→B,Γ ′, Φ⇒ Ψ,∆.
(weakening, → left)

(Subcase 11-2): {α∪β :B} 6- ∆. In this case, we have (α∪β :B,Π) 6- ∆, and the induction
hypothesis is available for Q in which the dropped part is 〈Γ ′;∆〉. Thus we have

(1) LMX ` Γ ′ ⇒ ∆; or

(2) there is an essential antecedents list 〈Γ; · · · ;Γn〉 for Γ ′;α∪β :B,Π ⇒ ∆;Σ.

In (1), we have LMX ` Γ ⇒ ∆ by the weakening rule. In (2), the list

A = 〈Γ, Γ ; Γ, Γ ; · · · ; Γn, Γ 〉

is an essential antecedents list for Γ ;Π ⇒ ∆;Σ. This is proved as follows. (2-1) L(A) ⊆ L(Γ,∆)
is obvious by the induction hypothesis. (2-2) For i = 1, . . . , n, the fact LMX ` Γi, Γ,Π ⇒ Σ is
shown by

.... P
Γ ′,Π ⇒ β :A

.... i.h.
Γi, α∪β :B,Π ⇒ Σ

Γi, α :A→B,Γ ′,Π ⇒ Σ.
(weakening, → left)
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(2-3) The derivability of R〈A〉〈Γ 〉〈∆〉 is shown by

Γi, Γ, Φ⇒ Ψ (i = 1, . . . , n)
.... R

〈Γ;···;Γn〉
〈Γ ′〉〈∆〉 (i.h.)

Γ ′, Γ, Φ⇒ Ψ,∆

Γ,Φ⇒ Ψ,∆.
(contraction)

(Case 12): The last inference is

.... P
Γ,Π ′ ⇒ β :A

.... Q
Γ,α∪β :B,Π ′ ⇒ ∆,Σ

Γ ; α :A→B,Π ′ ⇒ ∆; Σ
(→ left)

where Π = (α :A→B,Π ′). In this case, we have (α∪β :B,Π ′) 6- ∆ because (β :A→B,Π ′) 6- ∆,
and the induction hypothesis is available for Q in which the dropped part is 〈Γ ;∆〉. Thus we have

(1) LMX ` Γ ⇒ ∆; or

(2) there is an essential antecedents list 〈Γ; · · · ;Γn〉 for Γ ;α∪β :B,Π ′ ⇒ ∆;Σ.

(1) is just the required condition. In (2), the list

A = 〈Γ, Γ ; Γ, Γ ; · · · ; Γn, Γ 〉

is an essential antecedents list for Γ ;Π ⇒ ∆;Σ. This is proved as follows. (2-1) L(A) ⊆ L(Γ,∆)
is obvious by the induction hypothesis. (2-2) For i = 1, . . . , n, the fact LMX ` Γi, Γ,Π ⇒ Σ is
shown by .... P

Γ,Π ′ ⇒ β :A

.... i.h.
Γi, α∪β :B,Π ′ ⇒ Σ

Γi, Γ, α :A→B,Π ′ ⇒ Σ.
(weakening, → left)

(2-3) The derivability of R〈A〉〈Γ 〉〈∆〉 is shown by

Γi, Γ, Φ⇒ Ψ (i = 1, . . . , n)
.... R

〈Γ;···;Γn〉
〈Γ 〉〈∆〉 (i.h.)

Γ, Γ, Φ⇒ Ψ,∆

Γ,Φ⇒ Ψ,∆.
(contraction)

(Case 13): The last inference is

Γ,Π, {a} :A⇒ α∪{a} :B
Γ ; Π ⇒ ; α :A→B

(→ right)

where Σ = {α :A→B} and ∆ = ∅. In this case, 〈Γ 〉 is an essential antecedents list (n = 1) for
Γ ;Π ⇒;α :A→B.

(Case 14): The last inference is

α :Ai, Γ
′,Π ⇒ ∆,Σ

α :A∧A, Γ
′; Π ⇒ ∆; Σ

(∧ left)

where Γ = (α : A∧A, Γ
′) and i = 1 or 2. The induction hypothesis for the upper sequent

α :Ai, Γ
′;Π ⇒ ∆;Σ is available: (1) LMX ` α :Ai, Γ

′ ⇒ ∆; or (2) there is an essential antecedents
list for the upper sequent. In (1), we have LMX ` Γ ⇒ ∆ by the rule “∧ left”. In (2), it is easy
to show that the list is also an essential antecedents list for Γ ;Π ⇒ ∆;Σ.
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(Case 15): The last inference is

Γ, α :Ai,Π
′ ⇒ ∆,Σ

Γ ; α :A∧A,Π
′ ⇒ ∆; Σ

(∧ left)

where Π = (α : A∧A,Π
′) and i = 1 or 2. The induction hypothesis for the upper sequent

Γ ;α :Ai,Π
′ ⇒ ∆;Σ is available: (1) LMX ` Γ ⇒ ∆; or (2) there is an essential antecedents list

for the upper sequent. (1) is the required condition. In (2), it is easy to show that the list is also
an essential antecedents list for Γ ;Π ⇒ ∆;Σ.

(Case 16): The last inference is

Γ,Π ⇒ α :A Γ,Π ⇒ α :B
Γ ; Π ⇒ ; α :A∧B (∧ right)

where Σ = {α :A∧B} and ∆ = ∅. In this case, 〈Γ 〉 is an essential antecedents list (n = 1) for
Γ ;Π ⇒;α :A∧B.

(Case 17): The last inference is

.... P
α :A,Γ ′,Π ⇒ ∆,Σ

.... Q
α :B,Γ ′,Π ⇒ ∆,Σ

α :A∨B,Γ ′; Π ⇒ ∆; Σ
(∨ left)

where Γ = (α :A∨B,Γ ′). The induction hypothesis is available for P in which the dropped part is
〈α :A,Γ ′;∆〉. Thus we have

(A1) LMX ` α :A,Γ ′ ⇒ ∆; or

(A2) there is an essential antecedents list 〈ΓA
 ; · · · ;ΓA

m〉 for α :A,Γ ′;Π ⇒ ∆;Σ.

Similarly, by the induction hypothesis for Q, we have

(B1) LMX ` α :B,Γ ′ ⇒ ∆; or

(B2) there is an essential antecedents list 〈ΓB
 ; · · · ;ΓB

n 〉 for α :B,Γ ′;Π ⇒ ∆;Σ.

Then we consider four subcases according to the choice of the above conditions.
(Subcase 17-1): (A1) and (B1). We have LMX ` Γ ⇒ ∆ by “∨ left”.
(Subcase 17-2): (A1) and (B2). We show that the list 〈ΓB

 ; · · · ;ΓB
n 〉 is also an essential an-

tecedents list for Γ ;Π ⇒ ∆;Σ. The conditions (2-1) and (2-2) are obvious by the induction
hypothesis. The condition (2-3) is shown by

.... (A1)
α :A,Γ ′ ⇒ ∆

ΓB
i , Φ⇒ Ψ (i = 1, . . . , n)

.... R
〈Γ B

 ;···;Γ B
n 〉

〈α:B,Γ ′〉〈∆〉 (i.h.)
α :B,Γ ′, Φ⇒ Ψ,∆

α :A∨B,Γ ′, Φ⇒ Ψ,∆.
(weakening, ∨ left)

(Subcase 17-3): (A2) and (B1). Similar to 17-2.
(Subcase 17-4): (A2) and (B2). We show that the list 〈ΓA

 ; · · · ;ΓA
m;ΓB

 ; · · · ;ΓB
n 〉 is an essential

antecedents list for Γ ;Π ⇒ ∆;Σ. The conditions (2-1) and (2-2) are obvious by the induction
hypotheses. The condition (2-3) is shown by

ΓA
i , Φ⇒ Ψ (i = 1, . . . ,m)

.... R
〈Γ A

 ;···;Γ A
m〉

〈α:A,Γ ′〉〈∆〉 (i.h.)
α :A,Γ ′, Φ⇒ Ψ,∆

ΓB
i , Φ⇒ Ψ (i = 1, . . . , n)

.... R
〈Γ B

 ;···;Γ B
n 〉

〈α:B,Γ ′〉〈∆〉 (i.h.)
α :B,Γ ′, Φ⇒ Ψ,∆

α :A∨B,Γ ′, Φ⇒ Ψ,∆.
(∨ left)
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(Case 18): The last inference is
.... P

Γ, α :A,Π ′ ⇒ ∆,Σ

.... Q
Γ,α :B,Π ′ ⇒ ∆,Σ

Γ ; α :A∨B,Π ′ ⇒ ∆; Σ
(∨ left)

where Π = (α :A∨B,Π ′). The induction hypothesis is available for P in which the dropped part
is 〈Γ ;∆〉. Thus we have

(A1) LMX ` Γ ⇒ ∆; or

(A2) there is an essential antecedents list 〈ΓA
 ; · · · ;ΓA

m〉 for Γ ;α :A,Π ′ ⇒ ∆;Σ.

Similarly, by the induction hypothesis for Q, we have

(B1) LMX ` Γ ⇒ ∆; or

(B2) there is an essential antecedents list 〈ΓB
 ; · · · ;ΓB

n 〉 for Γ ;α :B,Π ′ ⇒ ∆;Σ.

(A1) and (B1) are equivalent, and they are just the required condition (1). Then we assume both
(A2) and (B2) hold. Consider the “product” 〈ΓA

i , Γ
B
j |  ≤ i ≤ m,  ≤ j ≤ n〉 of the two lists; for

example,
〈ΓA

 , Γ
B
 ; ΓA

 , Γ
B
 ; ΓA

 , Γ
B
 ; ΓA

 , Γ
B
 ; ΓA

 , Γ
B
 ; ΓA

 , Γ
B
 〉

if m = 2 and n = 3. We show that this is an essential antecedents list for Γ ;Π ⇒ ∆;Σ. The
condition (2-1) is obvious by the induction hypothesis. The condition (2-2) is shown by

.... i.h.
ΓA

i , α :A,Π ′ ⇒ Σ

.... i.h.
ΓB

j , α :B,Π ′ ⇒ Σ

ΓA
i , Γ

B
j , α :A∨B,Π ′ ⇒ Σ.

(weakening, ∨ left)

The condition (2-3) is shown by

ΓA
i , Γ

B
j , Φ⇒ Ψ (i = 1, . . . ,m, j = 1, . . . , n)

.... R
〈Γ B

 ;···;Γ B
n 〉

〈Γ 〉〈∆〉 (i.h.)

ΓA
i , Γ, Φ⇒ Ψ,∆ (i = 1, . . . ,m)

.... R
〈Γ A

 ;···;Γ A
m〉

〈Γ 〉〈∆〉 (i.h.)
Γ, Γ, Φ⇒ Ψ,∆,∆

Γ,Φ⇒ Ψ,∆.
(contraction)

(Case 19): The last inference is

Γ,Π ⇒ α :Ai

Γ ; Π ⇒ ; α :A∨A
(∨ right)

where Σ = {α :A∨A}, ∆ = ∅, and i = 1 or 2. In this case, 〈Γ 〉 is an essential antecedents list
(n = 1) for Γ ;Π ⇒;α :A∨B.

This completes the proof of Lemma 3.3.

Lemma 3.4 Each inference rule of LKX is admissible in LMX, for X = ∪R, ∪T; that is, for
each inference rule

S1

T or
S1 S2

T
of LKX, if LMX ` Si for all i, then LMX ` T .
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Proof We show the admissibility of “→ left”, “→ right”, “∧ right”, and “∨ right” rules of LKX.
(The other rules are shared by the two systems.)

[Admissibility of “→ left”] Suppose (i) LMX ` Γ ⇒ ∆,β :A, and (ii) LMX ` α∪β :B,Π ⇒ Σ
where max(α) ≤ max(β) if X = ∪T; then the goal is to show LMX ` α :A→B,Γ,Π ⇒ ∆,Σ. We
apply the Main Lemma 3.3 to (i) in which the dropped part is 〈Γ ;∆〉; then we have

(1) LMX ` Γ ⇒ ∆; or

(2) there exists an essential antecedents list 〈Γ; . . . ;Γn〉 for Γ ; ⇒ ∆; β :A.

In the case (1), we have LMX ` α :A→B,Γ,Π ⇒ ∆,Σ by the weakening rule. In the case (2), we
have

.... P1

α :A→B,Γ,Π ⇒ Σ · · ·
.... Pn

α :A→B,Γn,Π ⇒ Σ
.... R

〈Γ;···;Γn〉
〈Γ 〉〈∆〉

α :A→B,Γ,Π ⇒ Σ,∆

where Pi is
.... (2-2)

Γi ⇒ β :A

.... (ii)
α∪β :B,Π ⇒ Σ

α :A→B,Γi,Π ⇒ Σ.
(weakening, → left)

[Admissibility of “→ right”] Suppose (i) LMX ` {a} :A,Γ ⇒ ∆,α∪{a} :B where a 6∈ L(Γ,∆)∪
α if X = ∪R, and a 6∈ L(Γ,∆) ∪ α and max(α) < a if X = ∪T; then the goal is to show
LMX ` Γ ⇒ ∆,α :A→B. We apply the Main Lemma 3.3 to (i) in which the dropped part is
〈Γ ;∆〉 (note that {a} :A 6- ∆ holds by the Label Condition); then we have

(1) LMX ` Γ ⇒ ∆; or

(2) there exists an essential antecedents list 〈Γ; . . . ;Γn〉 for Γ ; {a} :A⇒ ∆;α∪{a} :B.

In the case (1), we have LMX ` Γ ⇒ ∆,α :A→B by the weakening rule. In the case (2), we have

.... (2-2)
Γ, {a} :A⇒ α∪{a} :B

Γ ⇒ α :A→B
(→ right) · · ·

.... (2-2)
Γn, {a} :A⇒ α∪{a} :B

Γn ⇒ α :A→B
(→ right)

.... R
〈Γ;···;Γn〉
〈Γ 〉〈∆〉

Γ ⇒ α :A→B,∆

where the Label Condition is satisfied by the condition (2-1).
[Admissibility of “∧ right”] Suppose (i) LMX ` Γ ⇒ ∆,α :A, and (ii) LMX ` Γ ⇒ ∆,α :B;

then the goal is to show LMX ` Γ ⇒ ∆,α :A∧B. We apply the Main Lemma 3.3 to (i) in which
the dropped part is 〈Γ ;∆〉; then we have

(A1) LMX ` Γ ⇒ ∆; or

(A2) there exists an essential antecedents list 〈ΓA
 ; . . . ;ΓA

m〉 for Γ ; ⇒ ∆; α :A.

Similarly, by the Main Lemma 3.3 for (ii), we have

(B1) LMX ` Γ ⇒ ∆; or

(B2) there exists an essential antecedents list 〈ΓB
 ; . . . ;ΓB

n 〉 for Γ ; ⇒ ∆; α :B.

17



If (A1) or (B1) holds, then we have LMX ` Γ ⇒ ∆,α :A∧B by the weakening rule. If both (A2)
and (B2) hold, then we have

.... Pi,j

ΓA
i , Γ

B
j ⇒ α :A∧B (i = 1, . . . ,m, j = 1, . . . , n)

.... R
〈Γ B

 ;···;Γ B
n 〉

〈Γ 〉〈∆〉
ΓA

i , Γ ⇒ α :A∧B,∆ (i = 1, . . . ,m)
.... R

〈Γ A
 ;···;Γ A

n 〉
〈Γ 〉〈∆〉

Γ, Γ ⇒ α :A∧B,∆,∆
Γ ⇒ α :A∧B,∆ (contraction)

where Pi,j is
.... (A2-2)

ΓA
i ⇒ α :A

.... (B2-2)
ΓB

j ⇒ α :B

ΓA
i , Γ

B
j ⇒ α :A∧B. (weakening, ∧ right)

[Admissibility of “∨ right”] Suppose (i) LMX ` Γ ⇒ ∆,α :Z where Z = A or B; then the goal
is to show LMX ` Γ ⇒ ∆,α :A∨B. We apply the Main Lemma 3.3 to (i) in which the dropped
part is 〈Γ ;∆〉; then we have

(1) LMX ` Γ ⇒ ∆; or

(2) there exists an essential antecedents list 〈Γ; . . . ;Γn〉 for Γ ; ⇒ ∆; α :Z.

In the case (1), we have LMX ` Γ ⇒ ∆,α :A∨B by the weakening rule. In the case (2), we have

.... (2-2)
Γ ⇒ α :Z

Γ ⇒ α :A∨B (∨ right) · · ·

.... (2-2)
Γn ⇒ α :Z

Γn ⇒ α :A∨B (∨ right)

.... R
〈Γ;···;Γn〉
〈Γ 〉〈∆〉

Γ ⇒ α :A∨B,∆

Theorem 3.5 If LKX ` Γ ⇒ ∆, then LMX ` Γ ⇒ ∆, for X = ∪R, ∪T.

Proof By induction on the LKX-proof of Γ ⇒ ∆, using Lemma 3.4.

Theorem 3.6 If LKX ` Γ ⇒ α :A, then LJX ` Γ ⇒ α :A, for X = ∪R, ∪T.

Proof By Theorems 3.5 and 3.1.

4 Weakening elimination

In this section we show that LJX can be changed into a system without the weakening rule.

The labelled sequent calculi LIX (X = ∪R, ∪T) is defined as follows.
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Axioms: α :A⇒ α :A.

Inference rules:

α :A, α :A, Γ ⇒ τ :F
α :A, Γ ⇒ τ :F

(contraction)

Γ ⇒ β :A α∪β :B, Π ⇒ τ :F
α :A→B, Γ,Π ⇒ τ :F

(→ left) with the proviso:

(Label Condition): max(α) ≤ max(β) if X = ∪T.

{a} :A, Γ ⇒ α∪{a} :B
Γ ⇒ α :A→B

(→ right) with the proviso:

(Label Condition): a 6∈ L(Γ )∪α if X = ∪R. a 6∈ L(Γ )∪α and max(α) < a
if X = ∪T.

α :A, Γ ⇒ τ :F
α :A∧B, Γ ⇒ τ :F

(∧ left)
α :B, Γ ⇒ τ :F

α :A∧B, Γ ⇒ τ :F
(∧ left)

Γ ⇒ α :A Π ⇒ α :B
Γ,Π ⇒ α :A∧B (∧ right)

α :A, Γ ⇒ τ :F α :B, Π ⇒ τ :F
α :A∨B, Γ,Π ⇒ τ :F

(∨ left)

Γ ⇒ α :A
Γ ⇒ α :A∨B (∨ right) Γ ⇒ α :B

Γ ⇒ α :A∨B (∨ right)

That is to say, LIX is obtained from LJX by eliminating the weakening rule and modifying the
other rules so that they can work enough without the weakening rule. For example, the “→ left”
rule

Γ ⇒ β :A α∪β :B, Π ⇒ τ :F
α :A→B, Γ,Π ⇒ τ :F

of LIX is stronger than the form

Γ ⇒ β :A α∪β :B, Γ ⇒ τ :F
α :A→B, Γ ⇒ τ :F

when the weakening rule is not available.

Lemma 4.1 If LIX ` Γ ⇒ α :A, then L(Γ ) = α, where X ∈ {∪R, ∪T}.
Proof By induction on LIX-proofs.

Theorem 4.2 If LJX ` Γ ⇒ α :A, then LIX ` Γ ′ ⇒ α :A for some Γ ′ ⊆ Γ , where X ∈
{∪R, ∪T}.
Proof By induction on LJX-proofs, using Lemma 4.1 in the case of “→ right”.

The system LIX will be used for the soundness proof in the next section, where Lemma 4.1
will play an important role for ∪T.
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5 Soundness

In this section we show the soundness of LIX, and finally we get the equivalence between the five
conditions: A ∈ X, LKX ` ⇒ ∅ :A, LMX ` ⇒ ∅ :A, LJX ` ⇒ ∅ :A, and LIX ` ⇒ ∅ :A.

Lemma 5.1 The following hold for any ∪T-model 〈〈I, ·, e,¹〉, V 〉 and any α, β ∈ I.
(1) α ¹ α·β.

(2) α ¹ β implies α·β ¹ β.

Proof (1) e·α ¹ β·α. (2) α·β ¹ β·β = β.

Let M be a ∪T-model 〈〈I, ·, e,¹〉, V 〉, and A = {a1, . . . , an} be a finite set of positive integers
such that a1 < . . . < an. A mapping f from A to I is called an interpretation of A on M if

f(a1)· · · · ·f(ai−1) ¹ f(ai)

holds for any i such that 2 ≤ i ≤ n. If M is a ∪R-model 〈〈I, ·, e〉, V 〉, then any mapping from A
to I is said to be an interpretation. For each label τ = {x1, x2, . . . , xm} ⊆ A where x1, . . . , xm are
mutually distinct, we define an element τf ∈ I by

{x1, x2, . . . , xm}f = e·f(x1)·f(x2)· · · · ·f(xm).

Lemma 5.2 If max(α) ≤ max(β), then αf ¹ βf , where f is an interpretation of a finite set
A ⊇ α ∪ β on a ∪T-model 〈〈I, ·, e,¹〉, V 〉.
Proof (Case 1): α = ∅. In this case, αf ¹ βf is obvious because ∅f = e.

(Case 2): α = {a, . . . , am} where a1 < · · · < am and m ≥ 1. In this case β is also a
non-empty set. Then suppose that β = {b, . . . , bn} where b1 < · · · < bn and n ≥ 1, and that
{x ∈ A | x < bn} = {c1, . . . , ck} where c1 < · · · < ck. Using Lemma 5.1 and the definition of
interpretation (i.e., f(c1)· · · · f(ck) ¹ f(bn)), we have

αf = f(a1)· · · · ·f(am)

¹
{
f(c1)· · · · ·f(ck) if am < bn
f(c1)· · · · ·f(ck)·f(bn) if am = bn

¹ f(bn) ¹ f(b1)· · · · ·f(bn) = βf

LetX be ∪R or ∪T, M be anX-model, S = (α :A, . . . , αm :Am ⇒ τ :F ) be a labelled sequent,
and f be an interpretation of L(S)(= α ∪ · · · ∪ αm ∪ τ) on M . We say that S is valid in M with
respect to f if and only if at least one of the following conditions holds:

(αf
 6|=M A), · · ·, (αf

m 6|=M Am), (τf |=M F ).

Theorem 5.3 (Soundness of LI∪R/LI∪T) Let X ∈ {∪R, ∪T}. If a labelled sequent S is prov-
able in LIX, then S is valid in M with respect to f for any X-model M and any interpretation f
of L(S) on M . (In particular, if LIX ` ⇒ ∅ :F , then F ∈ X.)

Proof By induction on the LIX-proof of S. We show the nontrivial cases.
(Case 1) The last inference is

Γ ⇒ β :A α∪β :B, ∆⇒ τ :F
α :A→B, Γ,∆⇒ τ :F

(→ left)

where Γ = (γ :C, . . . , γc :Cc) and ∆ = (δ :D, . . . , δd :Dd). We call the left upper sequent Sl

and the right upper sequent Sr. We assume that there exist an X-model M and an interpretation
f of L(S) on M such that S is not valid in M w.r.t. f ; then we will show that Sl or Sr is not valid
in M . By the assumption, we have
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(1) αf |=M A→B;

(2) γf
i |=M Ci (i = , . . . , c);

(3) δf
i |=M Di (i = , . . . , d); and

(4) τf 6|=M F .

Note that L(Sl) ⊆ L(S) and L(Sr) = L(S); these are derived by Lemma 4.1.
(Subcase 1-1): βf 6|=M A. In this case, the condition (2) implies that Sl is not valid in M

w.r.t. f ′ where f ′ is the restriction of f on L(Sl). Note that the condition of being an interpretation
is preserved through the restriction of the domain.

(Subcase 1-2): βf |=M A. Suppose that α = {x
, . . . , x


k, x


, . . . , x


a}, β = {x

, . . . , x

k, x


, . . . , x


b}

where xs
i 6= xt

j if s 6= t or i 6= j. The condition (1) and Lemma 5.2 (when X = ∪T) imply
αf ·βf |=M B, which is equivalent to (α ∪ β)f |=M B because

αf ·βf = e·f(x
)· · · · ·f(x

k)·f(x
)· · · · ·f(x

a)·e·f(x
)· · · · ·f(x

k)·f(x
)· · · · ·f(x

b)

= e·f(x0
1)· · · · ·f(x0

k)·f(x1
1)· · · · ·f(x1

a)·f(x2
1)· · · · ·f(x2

b) = (α ∪ β)f .

This and the conditions (3) and (4) imply that Sr is not valid in M w.r.t. f .
(Case 2): The last inference is

{a} :A, Γ ⇒ α∪{a} :B
Γ ⇒ α :A→B

(→ right)

where Γ = (γ : C, . . . , γc : Cc). We call the upper sequent S ′. We assume that there exist an
X-model M = 〈〈I, ·, e(,¹)〉, V 〉 and an interpretation f of L(S) on M such that S is not valid
in M w.r.t. f ; then we will show that S ′ is not valid in M w.r.t. some interpretation. By the
assumption, we have

(1) γf
i |=M Ci (i = , . . . , c); and

(2) αf 6|=M A→B.

By (2), there exists an element ξ ∈ I such that

(3) ξ |=M A;

(4) αf ·ξ 6|=M B; and

(5) αf ¹ ξ when X = ∪T.

The Label Condition and Lemma 4.1 imply

(6) L(S ′) = α ∪ {a} and a 6∈ α; and

(7) a > max(α) when X = ∪T.

We define a function f ′ from L(S ′) to I by extending f with f(a) = ξ. Then f ′ is an interpretation
of L(S ′) on M (this is guaranteed by (5), (6) and (7) if X = ∪T), and (1), (3) and (4) imply that
S ′ is not valid in M w.r.t. f ′.

By Theorems 2.2, 3.1, 3.5, (3.6,) 4.2, and 5.3, we establish the completeness and soundness of
all the systems:

Theorem 5.4 (Main Theorem for ∪R/∪T) Let X ∈ {∪R, ∪T}. The following conditions are
equivalent.
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• A ∈ X (i.e., A is valid in any X-model).

• LKX ` ⇒ ∅ :A.

• LMX ` ⇒ ∅ :A.

• LJX ` ⇒ ∅ :A.

• LIX ` ⇒ ∅ :A.

6 Hilbert-style systems

In this section we present Hilbert-style systems for ∪R and ∪T, and we show the completeness
and soundness of them.

First we introduce the basic system HT→∧

Axiom schemes of HT→∧:

A→A,
(A→B)→((B→C)→(A→C)),
(B→C)→((A→B)→(A→C)),
(A→(A→B))→(A→B),
(A∧B)→A, (A∧B)→B,
((A→B)∧(A→C))→(A→(B∧C)).

Inference rules of HT→∧:

A A→B
B

(modus ponens) A B
A∧B (adjunction)

These are axioms and rules for the connectives → and ∧ in the orthodox Hilbert-style formu-
lation of T.

Lemma 6.1 The following inference rules are derivable in HT→∧.

A→B B→C
A→C

(tr) A→B
(C→A)→(C→B)

(pref) A→B
(B→C)→(A→C)

(suff)

A→B
(A∧C)→B

(∧ left) A→B
(C∧A)→B

(∧ left) A→B A→C
A→(B∧C)

(∧ right)

Proof Easy.

Suppose that Γ = {A, . . . , An} is a non-empty multiset of formulas, and that A is a formula
A1∧ · · · ∧An where the association of ∧ is arbitrary (e.g., A = (A1∧(A2∧A3))∧(A4∧A5) ). Then,
we say that A is a conjunction of Γ , and it is represented by

∧{
Γ

}
.

Lemma 6.2 If Γ ⊇ ∆ 6= ∅, then HT→∧ ` ∧{
Γ

}→∧{
∆

}
for any conjunctions

∧{
Γ

}
and∧{

∆
}
.

Proof Easy, using “∧ left, right” in Lemma 6.1.

To describe the systems for ∪R and ∪T, we give some more definitions.
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Any mapping from the set of positive integers to the set of propositional variables is called label
translation. Let α :A be a labelled formula and f be a label translation where α = {a, a, . . . , an}
and a1 < a2 < · · · < an. The formula

f(a1)→
(
f(a2)→

(
· · ·→

(
f(an−1)→

(
f(an)→A

))
· · ·

))

is called the translation of α :A by f , and it is denoted by (α :A)f . Note that (∅ :A)f = A.
Let S = (α :A, . . . , αn :An ⇒ β :B) be a labelled sequent (in LJX-style), and f be a label

translation. A formula of the form
∧{

(α :A)f , . . . , (αn :An)f
} → (β :B)f

is called a translation of S by f , and it is denoted by Sf . For example
(
(p→A) ∧ (p→(q→B))

)
→

(
p→(q→C)

)

is a translation of the labelled sequent {1} :A, {1, 2} :B ⇒ {1, 2} :C by f where f(1) = p and
f(2) = q. We say that f is good for S if and only if

• a 6= b⇒ f(a) 6= f(b), and

• f(a) 6∈ V(S)

hold for any a, b ∈ L(S) = α ∪ · · · ∪ αn ∪ β where V(S) denotes the set of propositional variables
appearing in S. In other words, f is good for S if and only if f translates the label elements of S
into mutually distinct fresh variables.

Note that Sf denotes many formulas in general because of the arbitrariness of the conjunction.
We will often treat a statement such as “X ` Sf”. The following theorem guarantees that such a
statement does not cause ambiguity although Sf is not uniquely determined. (We will tacitly use
this fact.)

Theorem 6.3 Suppose that S is a labelled sequent, f is a label translation, and P and Q are
arbitrary translations of S by f . Then both the formulas P→Q and Q→P are provable in HT→∧.
(Therefore, “X ` P” and “X ` Q” are equivalent for any supersystem X of HT→∧.)

Proof By Lemma 6.2 and the rule “suff” in Lemma 6.1.

Now we present Hilbert-style systems H∪T for ∪T and H∪R for ∪R.

• H∪T = HT→∧ + (“∨ right” axiom) + (“∨ left” rule) + (substitution rule).

• H∪R = H∪T + C.

These axioms and rules are described as follows.

• Axiom schemes “∨ right”: A→(A∨B), and B→(A∨B).

• Inference rule “∨ left”:

(α :A,Γ ⇒ τ :F )f (α :B,∆⇒ τ :F )f

(α :A∨B,Γ,∆⇒ τ :F )f
(∨ left)

where f is label translation that is good for this last sequent.
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• Substitution rule:
A

A[p :=B]
(substitution)

where A[p :=B] denotes the formula obtained from the formula A by replacing each occur-
rence of the propositional variable p with the formula B.

• Axiom scheme C: (A→(B→C))→(B→(A→C)).

Note that the {→,∧,∨}-fragments of the orthodox relevant logics T and R are usually defined
by the Hilbert-style formulations:

T = HT→∧ + (“∨ right” axiom) + (“∨ left” axiom) + (distribution axiom),

R = T + C

where

∨ left: ((A→C)∧(B→C))→((A∨B)→C),

Distribution: (A∧(B∨C))→((A∧B)∨C).

These two axioms are provable in the semilattice logic H∪T (this fact can be verified by Theo-
rem 6.9); thus we assert that

∪T = T + (“∨ left” rule) + (substitution rule)

∪R = R + (“∨ left” rule) + (substitution rule)

or shortly
∪T = T + (“∨ left” rule)

∪R = R + (“∨ left” rule)

under the assumption that the orthodox logics contain the substitution rule, which is an admissible
rule. Another Hilbert-style formulation for ∪R has been presented by [3], in which the extra
inference rule is slightly different from our “∨ left”.

We will show that H∪T and H∪R are complete and sound with respect to the semilattice
models (Theorem 6.13).

Lemma 6.4 The following inference rule is derivable in H∪R.

A1→(· · ·→(An→(B→(C→D))) · · ·)
A1→(· · ·→(An→(C→(B→D))) · · ·) (exchange) where n ≥ 0.

The following inference rules are derivable in H∪T and in H∪R.
∧{

Γ
}→A

∧{
A,∆

}→B
∧{

Γ,∆
}→B

(cut) where Γ 6= ∅.

A1→(· · ·→(An→(B→(B→C))) · · ·)
A1→(· · ·→(An→(B→C)) · · ·) (contraction) where n ≥ 0.

A→(B→C)
A→((P→B)→(P→C))

(pref+)
A→(B→C)

(P→B)→(A→(P→C))
(pref×)

A→(B→C)
(A∧B)→C

(→ to ∧)
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Proof Using Lemma 6.1. Here we show “cut”, “pref×” and “→ to ∧”. The others are easy.
(cut) ∧{

Γ
}→A
.... ∧ left, right, etc.∧{

Γ,∆
}→∧{

A,∆
} ∧{

A,∆
}→B

∧{
Γ,∆

}→B
(tr)

(pref×) Suppose BC = B→C, PC = P→C, and X = (A→BC)→((BC→PC)→(A→PC)).

A→(B→C)
X (axiom)

(P→B)→(BC→PC) (axiom)
((BC→PC)→(A→PC))→((P→B)→(A→PC))

(suff)

X → ((A→BC)→((P→B)→(A→PC)))
(pref)

(A→BC)→((P→B)→(A→PC))
(m.p.)

(P→B)→(A→(P→C))
(m.p.)

(→ to ∧)
A→(B→C)

(A∧B)→(B→C)
(∧ left)

(A∧B)→B (axiom)
(B→C)→((A∧B)→C)

(suff)

(A∧B)→((A∧B)→C)
(tr)

(A∧B)→C
(contr.)

In the following, f denotes an arbitrary label translation.

Lemma 6.5 (1) H∪T ` ((α :A)f∧(α :B)f )→(α :A∧B)f .

(2) H∪T ` (α :A∧B)f→(α :A)f .

(3) H∪T ` (α :A∧B)f→(α :B)f .

(4) H∪T ` (α :A)f→(α :A∨B)f .

(5) H∪T ` (α :B)f→(α :A∨B)f .

Proof By induction on the number of elements of α.
(Case 1): α = ∅. In this case, (1)–(5) are just the axioms of H∪T.
(Case 2): α = {a, a, . . . , an} where a1 < a2 < · · · < an and n ≥ 1. Suppose that

{a2, . . . , an} = α′ and f(a1) = p. Then we can show (1)–(5), using Lemma 6.1 and the induction
hypotheses. For example, (1) is shown as follows.

(i) H∪T `
(
(p→(α′ :A)f ) ∧ (p→(α′ :B)f )

)
→

(
p→((α′ :A)f∧(α′ :B)f )

)
(axiom)

(ii) H∪T `
(
(α′ :A)f ∧ (α′ :B)f

)
→ (α′ :A∧B)f (induction hypothesis)

(iii) H∪T `
(
p→((α′ :A)f ∧ (α′ :B)f )

)
→

(
p→(α′ :A∧B)f

)
((ii) and “pref”)

(iv) H∪T `
(
(p→(α′ :A)f ) ∧ (p→(α′ :B)f )

)
→

(
p→(α′ :A∧B)f

)
((i), (iii) and “tr”)

(This last formula is just the formula of (1))

Lemma 6.6 If max(β) ≥ max(γ), then H∪T ` (γ :B→C)f → ((β :B)f → (β∪γ :C)f ).
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Proof For any label β and γ such that max(β) ≥ max(γ), we show

(A) H∪T ` (γ :B→C)f → ((β :B)f → (β∪γ :C)f ); and

(B) if β 6= ∅, than H∪T ` (β :B)f → ((γ :B→C)f → (β∪γ :C)f ).

((A) is just the desired proposition.) These are proved simultaneously by induction on |β| + |γ|
(i.e., the sum of the number of elements in β and γ), using Lemma 6.4.

(Case 1): |β|+ |γ| = . (A) is an axiom (B→C)→(B→C).
(Case 2): |β|+ |γ| ≥ .
(Subcase 2-1): γ = ∅. Let β = {b} ∪ β′ where b = min(β) and b 6∈ β′. (A) and (B) are shown

as follows.

(B→C) → (B→C).... (pref+)
(B→C) → ((β :B)f → (β :C)f )

(B→C) → (B→C).... (pref+)
(B→C) → ((β′ :B)f → (β′ :C)f )

(β :B)f → ((B→C) → (β :C)f )
(pref×)

(Subcase 2-2): γ 6= ∅. In this case, the hypothesis “max(β) ≥ max(γ)” implies that β 6= ∅. Let
β = {b} ∪ β′ and γ = {c} ∪ γ′ where b = min(β), c = min(γ), b 6∈ β′ and c 6∈ γ′.

(Subcase 2-2-1): b < c. In this case we have max(β′) ≥ max(γ), and the induction hypothesis is
available for β′ and γ. Then (A) and (B) are shown by applying “pref+” and “pref×”, respectively,
to the induction hypothesis (A):

H∪T ` (γ :B→C)f → ((β′ :B)f → (β′∪γ :C)f ).

(Subcase 2-2-2): c ≤ b. In this case we have max(β) ≥ max(γ′), and the induction hypothesis
is available for β and γ′. If c < b, then (A) and (B) are shown by applying “pref×” and “pref+”,
respectively, to the induction hypothesis (B):

H∪T ` (β :B)f → ((γ′ :B→C)f → (β∪γ′ :C)f ).

If c = b, then we also apply “contraction”; for example, (A) is obtained as follows.

.... (i.h. (B))
(β :B)f → ((γ′ :B→C)f → (p→(β′∪γ′ :C)f ))

(γ :B→C)f → ((β :B)f → (p→(p→(β′∪γ′ :C)f )))
(pref×)

(γ :B→C)f → ((β :B)f → (p→(β′∪γ′ :C)f ))
(contr.)

where p = f(c). (Note that (p→(β′∪γ′ :C)f ) = (β∪γ′ :C)f = (β∪γ :C)f .)

Lemma 6.7 H∪R ` (γ :B→C)f → ((β :B)f → (β∪γ :C)f ) (for arbitrary β and γ).

Proof This lemma is proved by induction on |β|+ |γ| similarly to Lemma 6.6, using an inference
rule

A→(B→C)
(P→A)→(B→(P→C))

which is derivable by “exchange” and “pref×” (or “pref+”).

For a multiset ∆ = {H, . . . , Hn} of formulas, we define a multiset ∆# of labelled formulas by

∆# = {∅ :H→H, ∅ :H→H, . . . , ∅ :Hn→Hn}.
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Lemma 6.8 (Translation of LIX-proofs into HX-proofs) Let X ∈ {∪T, ∪R}. If LIX `
Γ ⇒ α :A, then there is a finite multiset ∆ of formulas that satisfies the following.

(1) HX ` (∆#, Γ ⇒ α :A)f for any label translation f that is good for ∆#, Γ ⇒ α :A.

(2) ∆ ∪ Γ is non-empty.

(The multiset ∆ will be called a history for Γ ⇒ α :A.)

Proof By induction on the LIX-proof of Γ ⇒ α :A. We divide cases according to the last inference
of the proof. In any case, the condition (2) is easily verified; so we will show only the condition
(1).

(Case1): Γ ⇒ α :A is an axiom α :A⇒ α :A. In this case the empty set is a history.
(Case 2): The last inference is

β :B, β :B,Γ ′ ⇒ α :A
β :B,Γ ′ ⇒ α :A.

(contraction)

We get a history for the upper sequent by the induction hypothesis, and this is also a history for
the lower sequent. The condition (1) is shown by the induction hypothesis and the fact

H∪T `
∧{

(β :B)f ,Π
}→

∧{
(β :B)f , (β :B)f ,Π

}
.

(Case 3): The last inference is

Π ⇒ β :B β∪γ :C, Σ ⇒ α :A
γ :B→C, Π,Σ ⇒ α :A

(→ left)

where max(β) ≥ max(γ) if X = ∪T. Let Sl, Sr, and S be the left upper sequent, the right upper
sequent, and the lower sequent, respectively. By the induction hypotheses, we get histories ∆l and
∆r for Sl and Sr respectively. We show that ∆l ∪∆r is a history for S. Suppose that f is a label
translation that is good for the sequent (∆#

l ,∆
#
r ,S). Then f is good also for the sequent (∆#

x ,Sx)
for x = l, r. This fact is verified by the property

a ∈ L(Sl) ∪ L(Sr) ⇒ a ∈ L(S),

which is shown by the use of Lemma 4.1. Then, using Lemma 6.4, we have

.... i.h.

(∆#
l ,Π ⇒ β :B)f

.... Lemma 6.6 or 6.7
(γ :B→C)f→((β :B)f→(β∪γ :C)f )

((γ :B→C)f∧(β :B)f )→(β∪γ :C)f
(→to∧)

(∆#
l , γ :B→C,Π ⇒ β∪γ :C)f

(cut)(†)
.... i.h.

(∆#
r , β∪γ :C,Σ ⇒ α :A)f

(∆#
l ,∆

#
r , γ :B→C,Π,Σ ⇒ α :A)f .

(cut)

Note that the use of cut (†) is legal: ∆#
l ∪Π 6= ∅ (induction hypothesis (2) for Sl).

(Case 4): The last inference is

{a} :B, Γ ⇒ α∪{a} :C
Γ ⇒ α :B→C

(→ right)

where a 6∈ L(Γ ) ∪ α (and max(α) < a if X = ∪T). By the induction hypothesis, we get a history
∆ for the upper sequent. We show that ∆ ∪ {B} is a history for the last sequent S. Suppose that
f is a label translation that is good for the sequent ((∆,B)#,S). We will show

HX ` (∆#, ∅ :B→B,Γ ⇒ α :B→C)f .
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First we take a “fresh” propositional variable p that does not occur in this formula, and we define
a label translation f ′ by

{
f ′(a) = p,
f ′(x) = f(x), if x 6= a.

This translation f ′ is good for ∆#, {a} :B,Γ ⇒ α∪{a} :C, and we have

HX ` (∆#, {a} :B,Γ ⇒ α∪{a} :C)f ′

by the induction hypothesis. Then we have

(∆#, {a} :B,Γ ⇒ α∪{a} :C)f ′

(∆#, ∅ :p→B,Γ ⇒ α :p→C)f
(‡)

(∆#, ∅ :B→B,Γ ⇒ α :B→C)f
(substitution [p :=B])

where (‡) is null if X = ∪T (the upper formula and the lower formula are identical because
a = max(α∪{a})) and (‡) is repetition of “exchange” (Lemma 6.4) if X = ∪R.

(Case 5): The last inference is

β :Bi, Γ
′ ⇒ α :A

β :B∧B, Γ
′ ⇒ α :A

(∧ left)

where i = 1 or 2. We get a history for the upper sequent by the induction hypothesis, and this
is also a history for the lower sequent. The condition (1) is shown by the induction hypothesis,
Lemma 6.5(2)(3) and Lemma 6.1

(Case 6): The last inference is

Π ⇒ α :B Σ ⇒ α :C
Π,Σ ⇒ α :B∧C. (∧ right)

We get histories ∆l and ∆r for the left and right upper sequents respectively by the induction
hypotheses. Then ∆l ∪∆r is a history for the lower sequent. The condition (1) is shown by the
induction hypotheses, Lemma 6.5(1) and Lemma 6.1

(Case 7): The last inference is

β :B,Π ⇒ α :A β :C,Σ ⇒ α :A
β :B∨C,Π,Σ ⇒ α :A.

(∨ left)

We get histories ∆l and ∆r for the left and right upper sequents respectively by the induction
hypotheses. Then ∆l ∪∆r is a history for the lower sequent. The condition (1) is shown by

.... i.h.

(∆#
l , β :B,Π ⇒ α :A)f

.... i.h.
(∆#

r , β :C,Σ ⇒ α :A)f

(∆#
l ,∆

#
r , β :B∨C,Π,Σ ⇒ α :A)f .

(∨ left)

(Case 8): The last inference is

Γ ⇒ α :Bi

Γ ⇒ α :B∨B
(∨ right)

where i = 1 or 2. We get a history for the upper sequent by the induction hypothesis, and this
is also a history for the lower sequent. The condition (1) is shown by the induction hypothesis,
Lemma 6.5(4)(5) and Lemma 6.1
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Theorem 6.9 If LIX ` ⇒ ∅ :A, then HX ` A, for X = ∪T and ∪R.

Proof Suppose LIX ` ⇒ ∅ :A. By Lemma 6.8, there is a history ∆ = {H, . . . , Hn} (n ≥ 1) such
that

HX ` (∆# ⇒ ∅ :A)f =
∧{

H1→H1, . . . , Hn→Hn

}→A.

Then A is provable in HX by the axioms Hi→Hi and the rules adjunction and modus ponens.

To show the soundness of HX, we define a notation concerning models. Let 〈〈I, ·, e(,¹)〉, V 〉
be a ∪R(∪T)-model. Given a propositional variable p, we define V (p) to be the subset of I such
that p holds; that is,

V (p) = {α ∈ I | (α, p) ∈ V }.

Lemma 6.10 Suppose that R is a formula r1→(r2→(· · ·→(rk→Q) · · ·)) where r1, . . . , rk are propo-
sitional variables not occurring in Q. Suppose also that M and M ′ are ∪R(∪T)-models such that

• M = 〈〈I, ·, e(,¹)〉, V 〉;
• M ′ = 〈〈I, ·, e(,¹)〉, V ′〉;
• V ′(ri) ⊆ V (ri) for i = 1, . . . , k; and

• V ′(p) = V (p), for p 6= ri.

If β |=M R, then β |=M ′ R (β is an arbitrary element of I).

Proof By induction on k. (Note that β |=M Q if and only if β |=M ′ Q.)

Lemma 6.11 Suppose that M is a ∪R(∪T)-model 〈〈I, ·, e(,¹)〉, V 〉 and q1, . . . , qk are proposi-
tional variables such that

• |V (qi)| ≤ 1 for i = 1, . . . , k; and

• β |=M q→(q→(· · ·→(qk→(B∨B)) · · ·)).
Then,

β |=M q→(q→(· · ·→(qk→Bx)) · · ·))
holds for some x ∈ {1, 2}.

Proof Easy.

Theorem 6.12 If HX ` A, then A ∈ X (i.e., A is valid in any X-model), for X = ∪T and ∪R.

Proof By induction on the HX-proof of A. We show the nontrivial case: A is inferred by

(α :B, Γ ⇒ τ :F )f (α :B,∆⇒ τ :F )f

(α :B∨B, Γ,∆⇒ τ :F )f .
(∨ left)

We will show that if both of the upper formulas belong to X, then so does the lower formula. First
we define

• Γ = (γ :C, . . . , γc :Cc) and ∆ = (δ :D, . . . , δd :Cd);
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• τ = {t1, . . . , tn} and τ ∪ α ∪ γ ∪ · · · ∪ γc ∪ δ ∪ · · · ∪ δd = {t, . . . , tn, tn+, . . . , tm} where
ti 6= tj if i 6= j; and

• f(ti) = pi (i = 1, . . . ,m).

Then the condition “f is good for the sequent” implies the following.

• pi 6= pj if i 6= j.

• pi does not occur in (B1∨B2, C1, . . . , Cc, D1, . . . , Dd, F ).

Suppose (α :B∨B, Γ,∆⇒ τ :F )f 6∈ X; that is, there is an X-model M = 〈〈I, ·, e(,¹)〉, V 〉 such
that

e 6|=M

∧{
(α :B∨B)f , Γ f ,∆f

} → (τ :F )f

where Γ f = ((γ : C)f , . . . , (γc : Cc)f ) and ∆f = ((δ : D)f , . . . , (δd : Dd)f ). This means that
∃β, ∃τ, . . . ,∃τn ∈ I,

(0) β·τ· · · · ·τk− ¹ τk for k = 1, . . . , n (if X = ∪T);

(1) β |=M

∧{
(α :B∨B)f , Γ f ,∆f

}
;

(2) τi |=M pi for i = 1, . . . , n; and

(3) β·τ· · · · ·τn 6|=M F .

Then we define a model M ′ = 〈〈I, ·, e(,¹)〉, V ′〉 such that

• V ′(pi) = {τi} for i = 1, . . . , n;

• V ′(pj) = ∅ for j = n+1, . . . ,m; and

• V ′(r) = V (r) for r 6= pi.

Using (1) and Lemmas 6.10 and 6.11, we have

(1′) β |=M ′
∧{

(α :Bx)f , Γ f ,∆f
}

for some x ∈ {1, 2}.

Moreover we have

(2′) τi |=M ′ pi for i = 1, . . . , n; and

(3′) β·τ· · · · ·τn 6|=M ′ F .

Then at least one of the upper formulas of “∨ left” is out of X.

Theorem 6.13 (Completeness and soundness of H∪T/H∪R) HX ` A if and only if A ∈
X, for X = ∪T and ∪R.

Proof By Theorems 5.4, 6.9, and 6.12.
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7 Contractionless logics

In this section we investigate the contractionless variants of ∪R and ∪T, which we call ∪RW and
∪TW. The word “contractionless” means that the “contraction axiom”

(A→(A→B))→(A→B)

(this formula is usually called W) is not valid in ∪RW/∪TW.
In [4, 5, 8], two kinds of models were introduced for ∪RW/∪TW:

(1) Commutative monoid model: We define a ∪RWm-model (∪TWm-model) to be a structure
〈〈I, ·, e(,¹)〉, V 〉 with the same conditions as ∪R-model (∪T-model) except the idempotence
postulate: α·α = α; in other words, 〈I, ·, e〉 is a commutative monoid. (The subscript “m”
represents “commutative Monoid”.) The relation |= between I and the set of formulas is
defined by the same way as ∪R-model (∪T-model).

(2) Distributive semilattice model: We define a ∪RWs-model (∪TWs-model) to be a structure
〈〈I, ·, e(,¹)〉, V 〉 with the same conditions as ∪R-model (∪T-model) and an additional con-
dition:

α v (β·γ) only if there exist α and α such that α·α = α, α v β, and α v γ,
where σ v τ is defined by σ·τ = τ .

In other words, 〈I, ·, e〉 is a “distributive Semilattice” (from which the subscript “s” comes).
In this model, the definition of validity of implication is changed as follows.

α |= A→B ⇐⇒ ∀β(º α, for ∪TWs) [if α and β are disjoint and β |= A,
then α·β |= B],

where α and β are said to be disjoint if the condition

γ v α and γ v β only if γ = e

holds for any γ ∈ I. The validity for atomic formulas, conjunction, and disjunction is same
as ∪R(∪T)-models.

Then the logics ∪RWm, ∪TWm, ∪RWs and ∪TWs are defined to be sets of formulas:

∪RWm = {A | A is valid in any ∪RWm-model.}
∪TWm = {A | A is valid in any ∪TWm-model.}
∪RWs = {A | A is valid in any ∪RWs-model.}
∪TWs = {A | A is valid in any ∪TWs-model.}

We will show ∪RWm = ∪RWs and ∪TWm = ∪TWs. (The former equation had been proved in
[4] by a different way from ours; the latter had been “partially” proved (for the {→,∧}-fragments)
in [8].) Then these logics will be also called ∪RW and ∪TW without the subscripts.

We introduce labelled sequent calculi for these logics.
For ∪RWm and ∪TWm, labels are not sets but multisets of natural numbers. Except for this

difference, the labelled sequent calculi LKX, LMX, LJX, LIX for X =∪RWm and ∪TWm

are defined by the same axioms and rules as in Sections 2–4. (The subscript “m” also represents
“Multiset”.) Of course, the operation ∪ at the rules “→ left/right” is read as the multisets union.
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For ∪RWs and ∪TWs, labels are sets of natural numbers, like ∪R and ∪T. The labelled
sequent calculi LKX, LMX, LJX, LIX for X =∪RWs and ∪TWs are defined by the same
axioms and rules as in Sections 2–4 except that we impose an additional condition

α ∩ β = ∅
on all the “→ left” rules. (The subscript “s” also represents “Set”.)

All the arguments in Sections 2–4 work for ∪RWm, ∪TWm, ∪RWs, and ∪TWs, with slight
modifications described as follows.

• The label models for ∪RWm/∪TWm consist of the set of finite multisets of positive integers,
while they are sets for ∪RWs/∪TWs.

• The clause (1) in the definitions of ∪RWs/∪TWs-saturatedness is changed:

(∪RWs) If [α :A→B ∈ Γ and α ∩ β = ∅], then [β :A ∈ ∆ or α∪β :B ∈ Γ ].

(∪TWs) If [α :A→B ∈ Γ , max(α) ≤ max(β), and α ∩ β = ∅], then [β :A ∈ ∆ or α∪β :B ∈ Γ ].

On the other hand, the definitions of ∪RWm/∪TWm-saturatedness are equivalent to ∪R/∪T-
saturatedness except that the operation ∪ is read as the multisets union.

• In the definition of the relation - for ∪RWm/∪TWm, “α ⊆ β” means “∀x [x ∈ α ⇒
x ∈ β]”. (α and β are multiset, but the multiplicity of elements is not essential.)

• In Lemma 4.1 for ∪RWm/∪TWm, “L(Γ ) = α” means that “∀x [x ∈ L(Γ ) ⇐⇒ x ∈ α]”.
(L(Γ ) is a set and α is a multiset.)

Then we have the following.

Theorem 7.1 Let X ∈ {∪RW, ∪TW}.
(1) (A ∈ Xm) =⇒ (LKXm ` ⇒ ∅ :A) =⇒ (LMXm ` ⇒ ∅ :A) =⇒ (LJXm ` ⇒ ∅ :A) =⇒

(LIXm ` ⇒ ∅ :A).

(2) (A ∈ Xs) =⇒ (LKXs ` ⇒ ∅ :A) =⇒ (LMXs ` ⇒ ∅ :A) =⇒ (LJXs ` ⇒ ∅ :A) =⇒ (LIXs `
⇒ ∅ :A).

Proof Following Sections 2–4 with the above modification.

In the rest of this section, we will show

(LIXm ` ⇒ ∅ :A) =⇒ (LIXs ` ⇒ ∅ :A) =⇒ (A ∈ Xm and A ∈ Xs).

This and Theorem 7.1 imply that all the conditions in Theorem 7.1 are mutually equivalent.

Theorem 7.2 If LIXm ` ⇒ ∅ :A, then LIXs ` ⇒ ∅ :A, for X = ∪RW and ∪TW.

Proof If a label α in LIXm contains an integer twice or more, then we say α is a proper multiset
label. The following fact is easily verified by induction on the LIXm-proofs.

If LIXm ` Γ ⇒ τ :A and if Γ contains a proper multiset label, then τ is also a proper
multiset.

Using this fact, we can show the following.

If a proper multiset label appears in a proof of Γ ⇒ τ :A in LIXm, then τ is a proper
multiset.
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This implies Theorem 7.2 because LIXs is equivalent to “LIXm without proper multiset labels”.

Let M be a ∪TWm-model 〈〈I, ·, e,¹〉, V 〉, and A be a finite set of positive integers. The
interpretations of A on M are defined by the same condition as in Section 5. Moreover, the
element τf ∈ I (τ is a subset of A and f is an interpretation) and the notion “a labelled sequent
S is valid in M with respect to f” are defined in the same way as Section 5.

Lemma 7.3 (cf. 5.2) If max(α) < max(β), then αf ¹ βf , where α and β are sets of positive
integers and f is an interpretation of a set A ⊇ α ∪ β on a ∪TWm-model 〈〈I, ·, e,¹〉, V 〉.

Proof Similar to the proof of Lemma 5.2. Note that Lemma 5.1(1) also holds for ∪TWm-models,
while (2) is not necessary because “am = bn” (in the proof of Lemma 5.2) does not happen.

Theorem 7.4 (Soundness of LI∪RWs/LI∪TWs for commutative monoid models) Let X ∈
{∪RW, ∪TW}. If a labelled sequent S is provable in LIXs, then S is valid in M with respect to f
for any Xm-model M and any interpretation f of L(S) on M . (In particular, if LIXs ` ⇒ ∅ :F ,
then F ∈ Xm.)

Proof Similar to the proof of Lemma 5.3. (We use Lemma 7.3 instead of 5.2.)

Let M be a ∪RWs-model 〈〈I, ·, e〉, V 〉 or a ∪TWs-model 〈〈I, ·, e,¹〉, V 〉, and A be a set of
positive integers. A mapping f from A to I is called an s-interpretation of A on M if f is an
interpretation and the condition

x 6= y =⇒ f(x) and f(y) are disjoint

holds for any x, y ∈ A. The element τf ∈ I and the notion “a labelled sequent S is valid in M
with respect to f” are defined in the same way as Section 5.

Lemma 7.5 The following hold for any ∪RWs(∪TWs)-model 〈〈I, ·, e(,¹)〉, V 〉 and any α, β, β, β ∈
I.

(1) v is transitive, and α v α·β.

(2) e and α are disjoint.

(3) α and (β·β) are disjoint if and only if α and β are disjoint and α and β are disjoint.

Proof (1) and (2) are easy.
(3, if-part) Suppose that α and (β·β) are not disjoint; that is γ v α and γ v (β·β) for some

γ 6= e. By the definition of distributive semilattice, there exist γ and γ such that γ = (γ·γ)
and γi v βi for i = 1, 2. Then there is a number k ∈ {1, 2} such that γk 6= e because γ 6= e, and α
and βk are not disjoint because γk v (γ·γ) v α.

(3, only-if-part) Suppose that α and βk are not disjoint for k = 1 or 2; that is γ v α and γ v βk

for some γ 6= e. Then α and (β·β) are not disjoint because γ v βk v (β·β).

Lemma 7.6 Let M be a ∪RWs-model 〈〈I, ·, e〉, V 〉 or a ∪TWs-model 〈〈I, ·, e,¹〉, V 〉, f be an
s-interpretation on M , α and β be sets of positive integers, and ξ be an element of I.

(1) If α ∩ β = ∅, then αf and βf are disjoint.

(2) If αf and ξ are disjoint, then f(x) and ξ are disjoint for all x ∈ α.
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Proof (1) When both α and β are nonempty, Lemma 7.5(3)(if-part) shows that αf and βf are
disjoint (note that f(x) and f(y) are disjoint for any x ∈ α and any y ∈ β). If either α or β is
empty, then αf and βf are disjoint because of Lemma 7.5(2).

(2) By Lemma 7.5(3)(only-if-part).

Theorem 7.7 (Soundness of LI∪RWs/LI∪TWs for distributive semilattice models) Let
X ∈ {∪RW, ∪TW}. If a labelled sequent S is provable in LIXs, then S is valid in M with re-
spect to f for any Xs-model M and any s-interpretation f of L(S) on M . (In particular, if
LIXs ` ⇒ ∅ :F , then F ∈ Xs.)

Proof Similar to the proof of Lemma 5.3. (In the Subcase 1-2, we invoke Lemma 7.6(1). In the
Case 2, the assertion “f ′ is an s-interpretation of L(S ′) on M” needs Lemma 7.6(2).)

By Theorems 7.1, 7.2, 7.4 and 7.7, we have the following.

Theorem 7.8 (Main Theorem for ∪RW/∪TW) Let X ∈ {∪RW, ∪TW}. The following con-
ditions are equivalent.

• A ∈ Xm. • A ∈ Xs.

• LKXm ` ⇒ ∅ :A. • LKXs ` ⇒ ∅ :A.

• LMXm ` ⇒ ∅ :A. • LMXs ` ⇒ ∅ :A.

• LJXm ` ⇒ ∅ :A. • LJXs ` ⇒ ∅ :A.

• LIXm ` ⇒ ∅ :A. • LIXs ` ⇒ ∅ :A.

Finally we mention Hilbert-style axiomatization. We do not yet find Hilbert-style systems for
∪RW/∪TW. The argumant of Section 6 does not work for them: In the proof of Lemma 6.8
(Case 3), we use “→ to ∧”, which is derived with the axiom W. It seems that a difficulty is
(A∧(A→B))→B 6∈ ∪RW, ∪TW.
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