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Abstract

We give a new proof of the completeness theorem for the smallest normal modal propositional
logic K with the additional modal operator representing transitive closure of accessibility relation.

1 Introduction

In Kripke models, the modal operator ¤ is interpreted as

w |= ¤ϕ ⇐⇒ x |= ϕ for any x such that wRx

where w and x are possible worlds and R is the accessibility relation. Then we introduce a new modal
operator ¤+ by

w |= ¤+ϕ ⇐⇒ x |= ϕ for any x such that wR+x

where R+ is the transitive closure of R. Intuitively ¤+ϕ means the infinite conjunction as follows:

¤+ϕ ↔ ¤ϕ ∧ ¤¤ϕ ∧ ¤¤¤ϕ ∧ · · · .

This paper treats the smallest normal modal propositional logic with the operators ¤ and ¤+ as above.
This logic will be called K¤¤+ .

The relationship between ¤ and ¤+ in K¤¤+ is equal to that between the operators E (“everyone
knows”) and C (“common knowledge”) in the common knowledge logic, since

Cϕ ↔ Eϕ ∧ EEϕ ∧ EEEϕ ∧ · · · .

Moreover the relationship is similar to that between the operators X (“next time”) and G (“globally”)
in the temporal logic, since

Gϕ ↔ ϕ ∧ Xϕ ∧ XXϕ ∧ · · · .

There are axiom systems for the common knowledge logic and the temporal logic, and the completeness
(i.e., a formula is provable in the system if it is true in every model) have been proved by using cananical
models and filtrations (see, e.g., [1] and [2]). Of course the argument can be applied to K¤¤+ — an
axiom system of K¤¤+ is defined similarly to the common knowledge logic or the temporal logic, and the
completeness can be shown by using canonical models and filtrations.

The purpose of this paper is to give an alternative proof for the completeness of K¤¤+ . We use a
variant of semantic tableaux.

In general, completeness of a logic is shown by constructing a counter-model for a given unprovable
formula. In the canonical model methood, we first construct a big model (canonical model, which is an
infinite model), then we process it by certain methods (e.g., filtrations), and finally we get a counter-
model. In our method, on the other hand, we first make a small model (consisting of one world), then
we add worlds step by step, and finally we get a counter-model. A point is that no infinite models occur
in our method.

This method can be applied to the common knowledge logic and the temporal logic. We hope this
will shed a new light on the study of these logics.
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2 Formulas, models, and axomatizations

Formulas of K¤¤+ are constructed from the following symbols:

• Propositional variables. (The set of propositional variables is called Prop.)

• Logical connectives ∧ and ¬.

• Modal operators ¤ and ¤+.

We will use letters p, q, . . . to denote propositional variables, and letters α, β, . . . ϕ, ψ, . . . to denote
formulas. Other connectives (→, ∨) and constants (⊥,>) are defined by the usual abbreviations:
ϕ∨ψ = ¬((¬ϕ)∧¬ψ), ϕ → ψ = ¬(ϕ∧¬ψ), ⊥ = p∧¬p, and > = ¬(p∧¬p). Parentheses are omitted by the
convention that ¬, ¤ and ¤+bind more stronger than other connectives, ∧ and ∨ bind more stronger than
→, and that α1 → α2 → · · · → αn = α1 → (α2 → (· · · → (αn−1 → αn) · · · )). For example, the axiom
scheme (A2) below is (¤(α → β)) → ((¤α) → ¤β), and ¬α ∧ β → ¤+γ ∨ δ = ((¬α) ∧ β) → ((¤+γ) ∨ δ).

A Kripke model for K¤¤+ is a triple 〈W,R, V 〉 as follows.

• W is a nonempty set. (The set of possible worlds.)

• R is a binary relation on W . (The accessibility relation.)

• V is a function from W × Prop to {T,F}.

The transitive closure of R is denoted by R+; that is, xR+y holds if and only if

x = a0Ra1R · · ·Ran = y

for some a0, a1, . . . , an (n ≥ 1). Let M = 〈W,R, V 〉 be a Kripke model. The notion “a formula ϕ is true
at a world w in M”, written by “M,w |= ϕ”, is defined by inducion on ϕ as follows.

• M,w |= p ⇐⇒ V (w, p) = T.

• M,w |= α ∧ β ⇐⇒ M,w |= α and M,w |= β.

• M,w |= ¬α ⇐⇒ M,w 6|= α.

• M,w |= ¤α ⇐⇒ M,x |= α for any x such that wRx.

• M,w |= ¤+α ⇐⇒ M,x |= α for any x such that wR+x.

We say that a formula ϕ is valid if and only if M,x |= ϕ for any Kripke model M and any world x in M .

A proof system of K¤¤+ is as follows (cf. the axiomatization of linear temporal logic in [2, §9]). The
axiom schemes are

(A1) instances of classical tautologies,

(A2) ¤(α → β) → ¤α → ¤β (‘K axiom’ for ¤),

(A3) ¤+(α → β) → ¤+α → ¤+β (‘K axiom’ for ¤+),

(A4) ¤+α → ¤+¤+α (‘4 axiom’ for ¤+),

(A5) ¤+α → ¤α, and

(A6) ¤α ∧ ¤+(α → ¤α) → ¤+α (‘induction axiom’)

and the inference rules are

(R1)
α → β α

β
(modus ponens), and

(R2)
α

¤+α
(generalization for ¤+).

Another aximatization is there (cf. the axiomatization of common knowledge logic in [1, §3.3]): The
axiom schemes are (A1), (A2), and
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(A7) ¤+α → ¤α ∧ ¤¤+α,

and the inference rules are (R1) and

(R3)
α

¤α
(generalization for ¤), and

(R4)
α → ¤(β ∧ α)

α → ¤+β
(induction rule).

Theorem 1 These two systems are equivalent.

Proof We show the following.

(♠) The latter scheme (A7) and the rules (R3, R4) are provable and derivable in the formaer system.

(♣) The former schemes (A3,A4,A5,A6) and the rule (R2) are provable and derivable in the latter
system.

(Proof sketch of ♠): (A7) and (R3) are easily shown by using (A4), (A5), (R2) and others. (R4) is
shown as follows. First we have

α → ¤(β∧α) =⇒ β∧α → ¤(β∧α)
(R2)
=⇒ ¤+(β∧α→¤(β∧α)) =⇒ α → ¤+(β∧α→¤(β∧α)). (2.1)

On the other hand, an instance of (A6) is

¤(β ∧ α) ∧ ¤+(β ∧ α→¤(β ∧ α)) → ¤+(β ∧ α). (2.2)

Then

α → ¤(β ∧ α)
(2.1),(2.2)

=⇒ α → ¤+(β ∧ α) =⇒ α → ¤+β.

(Proof sketch of ♣): (A3) is inferred by (R4) from ¤+(α → β) ∧ ¤+α → ¤(β ∧ ¤+(α → β) ∧ ¤+α),
which is implied by (A2), (A7) and others. (A4) is inferred by (R4) from ¤+α → ¤(¤+α ∧ ¤+α), which
is implied by (A7) and others. (A5) is easy. (A6) is shown as follows. By (A2), we have

¤α ∧ ¤(α → ¤α) → ¤¤α. (2.3)

An instance of (A7) is

¤+(α → ¤α) → ¤(α → ¤α) ∧ ¤¤+(α → ¤α). (2.4)

Then (2.3) and (2.4) imply

¤α ∧ ¤+(α → ¤α) → ¤¤α, (2.5)

and (2.4), (2.5) and others imply

¤α ∧ ¤+(α → ¤α) → ¤(α ∧ ¤α ∧ ¤+(α → ¤α)), (2.6)

which induces (A6) using (R4). (R2) is shown as follows.

α =⇒ α ∧ > (R3)
=⇒ ¤(α ∧ >) =⇒ > → ¤(α ∧ >)

(R4)
=⇒ > → ¤+α =⇒ ¤+α.

QED

By “` ϕ”, we mean “ϕ is provable in (any one of) the above systems”. The purpose of this paper is
to show

(` ϕ) ⇐⇒ (ϕ is valid).

The soundness (⇒) is easily shown: all the axioms are valid, and all the inference rules preserve the
validity of formulas. The rest of this paper will be devoted to proving the completeness (⇐).
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3 Special formulas

In this section, we show provability of certain formulas which will be used in the next section.
Two formulas α and β are said to be provably equivalent when ` (α → β)∧ (β → α). If Γ =

{γ1, γ2, . . . , γn} is a finite set of formulas, then “` 〈 Γ 〉⇒ ϕ” means “ ` (γ1 ∧ γ2 ∧ · · · ∧ γn) → ϕ”. Note
that we do not mind permutations or duplications in 〈γ1, . . . , γn〉 because, for example, ((γ1∧γ2)∧γ3) → ϕ
and ((γ2 ∧ γ1) ∧ (γ3 ∧ γ1)) → ϕ are provably equivalent.

Lemma 2 (1) If ` 〈 ϕ1, ϕ2, . . . , ϕn 〉⇒ ψ, then ` 〈 ϕ1∨ρ, ϕ2∨ρ, . . . , ϕn∨ρ 〉⇒ ψ∨ρ.

(2) If ` 〈 ϕ1, ϕ2, . . . , ϕn 〉⇒ ψ, then ` 〈 ρ→ϕ1, ρ→ϕ2, . . . , ρ→ϕn 〉⇒ ρ→ψ.

(3) If ` 〈 ϕ1, ϕ2, . . . , ϕn 〉⇒ ψ, then ` 〈 ¤ϕ1,¤ϕ2, . . . , ¤ϕn 〉⇒ ¤ψ.

(4) If ` 〈 ϕ1, ϕ2, . . . , ϕn 〉⇒ ψ, then ` 〈 ¤+ϕ1, ¤+ϕ2, . . . , ¤+ϕn 〉⇒ ¤+ψ.

Proof (1) and (2) are properties of classical logic. (3) and (4) are properties of normal modal logics
(i.e., systems containing the axioms scheme A1, A2, and A3, and the inference rules R1, R2, and R3).
QED

Lemma 3 Define formulas (1),(2),. . . ,(5) as follows.

(1) ¤τ . (2) ¤+(¬α → ¤τ). (3) ¤+(α → ¤β).
(4) ¤+(τ → ω). (5) ¤+(τ → α → ¤+(β → ω)).

Then we have

` 〈 (1), (2), (3), (4), (5) 〉⇒ ¤+ω.

Proof We define ξ = α → ¤+(β → ω) (therefore (5) = ¤+(τ → ξ)). Since ` ¤+(β → ω) → ¤¤+(β → ω)
(∵ A7), we get

` ¤+(¤+(β → ω) → ¤ξ) (3.1)

by (R2) and others. Let (5′) = ¤(τ → α → ¤+(β → ω)) and (5′′) = ¤+(¤τ → ¤(α → ¤+(β → ω))). We
have

` 〈 (1), (5′) 〉⇒ ¤ξ, and (3.2)

` 〈 (2), (5′′) 〉⇒ ¤+(¬α → ¤ξ); (3.3)

hence, by (3.3) and (3.1), we get

` 〈 (2), (5′′) 〉⇒ ¤+(¬α ∨ ¤+(β → ω) → ¤ξ),

which is equivalent to

` 〈 (2), (5′′) 〉⇒ ¤+(ξ → ¤ξ). (3.4)

Then (3.2), (3.4) and the induction axiom (A6) imply

` 〈 (1), (2), (5′), (5′′) 〉⇒ ¤+ξ. (3.5)

Next we define ξ′ = α → ¤(β → ω) and (4′) = ¤+¤(τ → ω). We have

` 〈 (3), ¤+ξ′ 〉⇒ ¤+(α → ¤ω), and (3.6)

` 〈 (2), (4′) 〉⇒ ¤+(¬α → ¤ω); (3.7)

then, by (3.6) and (3.7), we get

` 〈 (2), (3), (4′), ¤+ξ′ 〉⇒ ¤+¤ω. (3.8)
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On the other hand,

` 〈 (1), (4′′) 〉⇒ ¤ω (3.9)

where (4′′) = ¤(τ → ω). Therefore, by (3.8), (3.9) and the fact ` ¤ω ∧ ¤+¤ω → ¤+ω (∵ induction
axiom A6), we get

` 〈 (1), (2), (3), (4′), (4′′),¤+ξ′ 〉⇒ ¤+ω. (3.10)

Finally (3.5), (3.10), and the facts

` (4) → (4′), ` (4) → (4′′), ` (5) → (5′), ` (5) → (5′′)

imply the conclusion:

` 〈 (1), (2), (3), (4), (5) 〉⇒ ¤+ω.

QED

Lemma 4 Suppose σ, σ′, τ, τ ′ and ω are formulas such that

(a) ` σ → ¤τ ,

(b) ` σ′ → ¤τ ′, and

(c) ` ¬σ′ → ¤τ .

Then we have

(d) ` 〈 σ → ¤+(τ → ω), σ → ¤+(τ → σ′ → ¤+(τ ′ → ω)) 〉⇒ σ → ¤+ω.

Proof By Lemma 3 (α = σ′ and β = τ ′), we get

` 〈 ¤τ, ¤+(¬σ′ → ¤τ), ¤+(σ′ → ¤τ ′), ¤+(τ → ω), ¤+(τ → σ′ → ¤+(τ ′ → ω)) 〉⇒ ¤+ω,

which implies

` 〈 ¤τ, ¤+(τ → ω), ¤+(τ → σ′ → ¤+(τ ′ → ω)) 〉⇒ ¤+ω

because of the facts ` ¤+(¬σ′ → ¤τ) (∵ (c)) and ` ¤+(σ′ → ¤τ ′) (∵ (b)). Then (d) is obtained by (a)
and Lemma 2(2). QED

In the rest of this section, a natural number N ≥ 2 and formulas ω, σi, τi (i = 1, 2, . . . , N) are fixed.
A formula is called a spaecial formula if and only if it is of the form

σf(1) → ¤+
(
τf(1) → σf(2) → ¤+

(
τf(2) → · · · → σf(m) → ¤+(τf(m) → ω) · · ·

))
for some natural number m and some function f that satisfy the following conditions.

• 1 ≤ m ≤ N .

• f is an injection (one-to-one) from {1, 2, . . . ,m} to {1, 2, . . . , N}.

• f(1) = 1.

The set of spacial formulas is called SP, which is a finite set. For example, if N = 3, then

SP =
{

σ1 → ¤+(τ1 → ω),

σ1 → ¤+(τ1 → σ2 → ¤+(τ2 → ω)),

σ1 → ¤+(τ1 → σ3 → ¤+(τ3 → ω)),

σ1 → ¤+(τ1 → σ2 → ¤+(τ2 → σ3 → ¤+(τ3 → ω))),

σ1 → ¤+(τ1 → σ3 → ¤+(τ3 → σ2 → ¤+(τ2 → ω)))
}
.

(3.11)

SP consists of sixteen formulas if N = 4.
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Theorem 5 (Main Theorem on Special Formulas) Suppose that

(1) ` σ1 ∨ σ2 ∨ · · · ∨ σN , and

(2) ` σi → ¤τi, for i = 1, 2, . . . , N ,

where N ≥ 2. Then we have

` 〈 SP 〉⇒ (σ1 → ¤+ω).

This theorem, which is the goal of this section, will be proved later.

A formula is called a key formula of type I if and only if it is of the form

σf(1) → ¤+
(
τg(1) → σf(2) → ¤+

(
τg(2) → · · · → σf(m) → ¤+(τg(m) → ω) · · ·

))
(3.12)

(the underline will be used later) for some natural number m and some functions f and g that satisfy
the following conditions.

• 1 ≤ m ≤ N .

• f is an injection from {1, 2, . . . ,m} to {1, 2, . . . , N}.

• g is a function (not limited to injection) from {1, 2, . . . ,m} to {1, 2, . . . , N}.

• f(1) = g(1) = 1.

♥ (∀i ∈ {1, . . . ,m})(∃j ≤ i)(f(j) = g(i)).

The set of key formulas of type I is called KeyI, which is a finite superset of SP. For example, if N = 3,
then KeyI consists of seventeen formulas as follows.

KeyI = SP (see (3.11)) ∪
{

σ1 → ¤+(τ1 → σ2 → ¤+(τ1 → ω)),

σ1 → ¤+(τ1 → σ3 → ¤+(τ1 → ω)),

σ1 → ¤+(τ1 → σ2 → ¤+(τ1 → σ3 → ¤+(τi → ω))) (i = 1, 2, 3),

σ1 → ¤+(τ1 → σ2 → ¤+(τ2 → σ3 → ¤+(τj → ω))) (j = 1, 2),

σ1 → ¤+(τ1 → σ3 → ¤+(τ1 → σ2 → ¤+(τi → ω))) (i = 1, 2, 3),

σ1 → ¤+(τ1 → σ3 → ¤+(τ3 → σ2 → ¤+(τk → ω))) (k = 1, 3)
}
.

Lemma 6 ` 〈 SP 〉⇒ ϕ for any key formula ϕ of type I.

Proof For any key formula ϕ of type I, there is a special formula ϕ∗ which is embedded in ϕ and
` 〈 ϕ∗ 〉⇒ ϕ. For example, if ϕ is

σ1 → ¤+(τ1 → σ2 → ¤+(τ1 → σ3 → ¤+(τ3 → σ4 → ¤+(τ3 → σ5 → ¤+(τ1 → σ6 → ¤+(τ5 → ω)))))),

then ϕ∗ is

σ1 → ¤+(τ1 → σ3 → ¤+(τ3 → σ5 → ¤+(τ5 → ω)))),

which is embedded in ϕ as

σ1 → ¤+(τ1 → σ2 → ¤+(τ1 → σ3 → ¤+(τ3 → σ4 → ¤+(τ3 → σ5 → ¤+(τ1 → σ6 → ¤+(τ5 → ω)))))).

In general, ϕ∗ is defined as follows. Let ϕ be the fomrula as (3.12). Without loss of generality, we suppose
f(i) = i for all i. Then, by the property ♥, we have

(♥′) i ≥ g(i).
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Now we define a sequence a1, a2, . . . of natural numbers by

a1 = g(m), ax+1 = g(ax − 1) for x = 1, 2, . . .

By ♥′, this sequence is strictly decreasing, and ϕ∗ is

σaz → ¤+
(
τaz → σaz−1 → ¤+

(
τaz−1 → · · · → σa2 → ¤+(τa2 → σa1 → ¤+(τa1 → ω)) · · ·

))
where az = 1. The fact ` 〈 ϕ∗ 〉 ⇒ ϕ is obtained from ` ¤+(τg(m) → ω) → ¤+(τg(m) → ω) by
appropriate applications of Lemma 2(2), 2(4) and the fact “` 〈 ¤+α 〉 ⇒ ¤+β implies ` 〈 ¤+α 〉 ⇒
¤+(τ → σ → ¤+β)”. QED

A formula ϕ is called a key formula of type II if and only if there is a formula ψ which satisfies the
following conditions.

• ψ is a key formula of type I as (3.12) where m ≤ (N − 1).

• ϕ is obtained from ψ by deleting the underlined ‘τg(m) →’ in (3.12).

The natural number m is called the depth of ϕ. For example, if N = 3, then there are just three key
formulas of type II:

σ1 → ¤+ω. (depth = 1)

σ1 → ¤+(τ1 → σ2 → ¤+ω). (depth = 2)

σ1 → ¤+(τ1 → σ3 → ¤+ω). (depth = 2)

Lemma 7 Suppose that

(1) ` σ1 ∨ σ2 ∨ · · · ∨ σN , and

(2) ` σi → ¤τi, for i = 1, 2, . . . , N ,

where N ≥ 2. Then

` 〈 KeyI 〉⇒ ϕ

for any key formula ϕ of type II.

Proof ϕ is of the form

σf(1) → ¤+
(
τg(1) → · · · → σf(m−1) → ¤+

(
τg(m−1) → σf(m) → ¤+ω

)
· · ·

)
.

We will abbreviate this to

• → σf(m) → ¤+ω.

That is, “•” denotes the context “ σf(1) → ¤+(τg(1) → · · · → σf(m−1) → ¤+(τg(m−1) → ”. Therefore, for
example, • → σf(m) → ¤+(τg(m) → ω) is the fomrula (3.12), and • → σ1 → ¤+ω is just σ1 → ¤+ω when
m = 1.

We define a set U of natural numbers by

U = {1, 2, . . . , N} − {f(1), f(2), . . . , f(m)}.

U is not empty because of the definition of key formula of type II. Then we prove this Lemma 7 by
induction on |U |; in other words, we prove this lemma for any ϕ of depth (N − 1), ϕ of depth (N − 2),
. . . , ϕ of depth 1, successively.

(Case 1: |U | = 1; depth of ϕ is N − 1.) For any i ∈ {1, . . . ,m}, the formula

• → σf(m) → ¤+(τf(i) → ω) (3.13)

is a key formula of type I. Therefore we have

` 〈 KeyI 〉⇒ • → σf(m) → ¤+((τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)) → ω) (3.14)

7



because of the fact

` 〈 τf(1)→ω, τf(2)→ω, . . . , τf(m)→ω 〉⇒ (τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)) → ω

and Lemma 2(4) and 2(2). Let u be the only element of U . Similarly to (3.14), we have

` 〈 KeyI 〉⇒ • → σf(m) → ¤+
(
(τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)) → σu → ¤+(τu → ω)

)
(3.15)

because the formula

• → σf(m) → ¤+(τf(i) → σu → ¤+(τu → ω))

is a key formula of type I for any i ∈ {1, . . . ,m}. On the other hand, by Lemma 4 (σ = σf(m), σ′ = σu,
τ = (τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)), τ ′ = τu), we get

` 〈 σf(m) → ¤+((τf(1) ∨ · · · ∨ τf(m)) → ω),

σf(m) → ¤+((τf(1) ∨ · · · ∨ τf(m)) → σu → ¤+(τu → ω)) 〉 ⇒ σf(m) → ¤+ω.
(3.16)

Note that the hypotheses (a), (b), and (c) of Lemma 4 are shown by the hypotheses (1) and (2) of this
Lemma 7. Then (3.14), (3.15), (3.16) and Lemma 2 imply

` 〈 KeyI 〉⇒ • → σf(m) → ¤+ω, (3.17)

which is the required formula.
(Case 2: |U | > 1; depth of ϕ is less then N − 1.) By the same argument of (3.14), we obtain

` 〈 KeyI 〉⇒ • → σf(m) → ¤+((τf(1) ∨ τf(2) ∨ · · · ∨ τf(m)) → ω). (3.18)

On the other hand, the formula

• → σf(m) → ¤+(τf(i) → σu → ¤+ω))

is a key formulas of type II with greater depth for any i ∈ {1, . . . ,m} and any u ∈ U . Therefore by the
induction hypothesis,

` 〈 KeyI 〉⇒ • → σf(m) → ¤+(τf(i) → σu → ¤+ω)),

and then

` 〈 KeyI 〉⇒ • → σf(m) → ¤+
(
(τf(1) ∨ · · · ∨ τf(m)) → (σu1 ∨ · · · ∨ σuk

) → ¤+(> → ω)
)

(3.19)

where U = {u1, . . . , uk}. Now (3.18), (3.19), and Lemma 4 (σ = σf(m), σ′ = (σu1 ∨ · · · ∨ σuk
), τ =

(τf(1) ∨ · · · ∨ τf(m)), τ ′ = >) imply

` 〈 KeyI 〉⇒ • → σf(m) → ¤+ω

similarly to (3.17). QED

Proof of Theorem 5 Since (σ1 → ¤+ω) is a key formula of type II, we get Theorem 5 by Lemmas 6
and 7. QED

4 Making a countermodel

If ϕ is a frommula, then the expressions ‘ϕ :T’ and ‘ϕ :F’ are called signed formulas. A semantic diagram
is a finite tree whose nodes are associated with finite sets of signed formulas and whose edges are labeled
‘¤’ or ‘¤+’. Set(a) denotes the set of signed formulas that is associated with the node a. If a node b is
a ¤-successor (or ¤+-successor) of a node a, then we write a<¤b (or a<¤+

b, respectively). Moreover we
write a < b if and only if a<¤b or a<¤+

b. The transitive closure of < is written by ¿. Figure 1 is an
example of a semantic diagram, in which Set(a) = {α : T, β : T, γ : F}, Set(b) = ∅, a<¤b, b<¤+

e, a < b,
b < e, a 6< e, a ¿ b, a ¿ e, and a 6¿ a hold. In the following, Γ,∆, . . . will denote sets of signed formulas,
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Figure 1: A semantic diagram.

a α :T, β :T, γ :F

b

e δ :T, ε :F

c ζ :T d η :F

f g θ :F, ι :F

HHH
¤

¤+

¤+

©©©¤+

HHH¤+

©©©¤

Figure 2: Semantic diagrams S and T .

S
Γ1

Γ2 a
Γ3

Γ4

@@ ¡¡
¤ ¤

¤+

T
∆1

∆2

∆3 ∆4

@@ ¡¡

¤+

¤ ¤+

S, T , . . . will denote semantic diagrams, and a, b, . . . will denote nodes of diagrams. By “ϕ ∈T x” (or
“ϕ ∈F x”), we mean “(ϕ :T) ∈ Set(x)” (or “(ϕ :F) ∈ Set(x)”, respectively).

For each diagram S, we define a formula Neg(S) (called ‘negation of S’) inductively as follows. If a
set

{ϕ1 :T, ϕ2 :T, . . . , ϕm :T, ψ1 :F, ψ2 :F, . . . , ψn :F}

is associatsed with the root of S, and subdiagrams S1,S2, . . . ,Sk are connected with the root by ¤-edges
and T1, T2, . . . , Tl are connected with the root by ¤+-edges, then Neg(S) is the formula

⊥ ∨ ¬ϕ1 ∨ ¬ϕ2 ∨ · · · ∨ ¬ϕm ∨ ψ1 ∨ ψ2 ∨ · · · ∨ ψn∨
¤(Neg(S1)) ∨ ¤(Neg(S2)) ∨ · · · ∨ ¤(Neg(Sk))∨

¤+(Neg(T1)) ∨ ¤+(Neg(T2)) ∨ · · · ∨ ¤+(Neg(Tk)).

For example, the negation of the diagram of Figure 1 is provably equivalent to

¬α ∨ ¬β ∨ γ ∨ ¤¤+(¬δ ∨ ε) ∨ ¤+¬ζ ∨ ¤+
(
η ∨ ¤+⊥ ∨ ¤(θ ∨ ι)

)
.

A diagram S is said to be consistent if and only if 6` Neg(S).

Let S and T be semantic diagrams and a be a node of S. By ‘S
a
+ T ’, we mean the diagram obtained

by joining S and T in which a and the root of T are merged into one node. For example, if S and T are
diagrams as Figure 2, then S

a
+ T is the diagram as Figure 3.

Figure 3: Semantic diagram S
a
+ T .

Γ1

Γ2 Γ3,∆1

Γ4

@@ ¡¡

@@

¤ ¤

¤+

∆2

∆3 ∆4

¡¡

@@ ¡¡

¤+

¤+¤
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Lemma 8 Let S, T , T1, T2, . . . , Tn be semantic diagrams (n ≥ 0) and a be a node of S. If

` 〈 Neg(T1), Neg(T2), . . . , Neg(Tn) 〉⇒ Neg(T ),

then we have

` 〈 Neg(S
a
+ T1), Neg(S

a
+ T2), . . . , Neg(S

a
+ Tn) 〉⇒ Neg(S

a
+ T ).

Proof By Lemma 2 and the definition of Neg(). QED

Let L be a finite set {λ1, λ2, . . . , λk} of formulas where λi and λj are distinct if i 6= j. We say that a
set Λ of signed formulas is a valuation of L if Λ is {λ1 :•1, λ2 :•2, . . . , λk :•k} (•i is T or F). There are
2k distinct valuations of L.

For a set Γ of signed formulas, we define a set ΓT
¤ of signed formulas by ΓT

¤ = {ϕ :T | (¤ϕ :T) ∈ Γ}.
For example, {¤ϕ1 :T, ¤ϕ2 :F, ¤+ϕ3 :T, ¬¬¤ϕ4 :T, ¤¤ϕ5 :T}T

¤ = {ϕ1 :T, ¤ϕ5 :T}.
Now we show a lemma, in which (3) is the novelty of our completeness proof.

Lemma 9 (Consistency preserving extensions of diagrams) Let L = {λ1, λ2, . . . , λk} (k ≥ 1) be
a finite set of formulas. We have the following.

(1) If a semantic diagram S is consistent and a is a node of it, then there exists a valuation Λ of L
such that the diagram S

a
+ Λ (i.e., the diagram obtained from S by adding Λ to the node a) is

consistent. The process of making S
a
+ Λ from S will be called “maximalization for a with respect

to L”.

(2) Let Γ be a valuation of L and S be a diagram as Figure 4; that is, Set(a) = Γ ∪ {¤ϕ :F} for some
node a of S. If S is consistent, then there exists a valuation Λ of L such that the diagram T of
Figure 5 is consistent. The process of making T from S will be called “fulfillment of ¤ϕ : F for a
with respext to L”.

(3) Let Γ1 be a valuation of L and S be a diagram as Figure 6; that is, Set(a) = Γ1 ∪ {¤+ϕ : F} for
some node a of S. If S is consistent, then one of the follwoing conditions holds.

(I) There is a valuation Λ of L such that the diagram T of Figure 7 is consistent.

(II) There are valuations Γ2, Γ3, . . . , Γm and Λ of L such that m ≥ 2 and the diagram T of Figure
8 is consistent.

The process of making T from S will be called “fulfillment of ¤+ϕ :F for a with respect to L”.

Note that, in Figures 4–8, U and V1,V2, . . . ,Vn are subdiagrams where U may be null (this means the
node a is the root) and n ≥ 0.

Proof
(1) Since ` 〈 ¬λi, λi 〉⇒ ⊥, one of the diagrams S

a
+ λi :T and S

a
+ λi :F is consistent (otherwise

` Neg(S) by Lemma 8). Iterating this argument, we can chose •1, •2, . . . , •k (•i ∈ {T, F}) such that

S
a
+ λ1 :•1, λ2 :•2, . . . , λk :•k is consistent.

(2) For any set Λ of signed formulas, we define the formula 〈〈Λ〉〉 to be ¬Neg( Λ ). For example, if
Λ = {¤α :T, ¤β :T, ¤+γ :T, ¤+δ :F}, then 〈〈Λ〉〉 is provably equivalent to ¤α ∧ ¤β ∧ ¤+γ ∧ ¬¤+δ and
〈〈ΛT

¤〉〉 is provably equivalent to α ∧ β. Note that

` 〈〈Λ〉〉 → ¤〈〈ΛT
¤〉〉

because ` ¤α1 ∧ · · · ∧ ¤αx → ¤(α1 ∧ · · · ∧ αx). Now let W be a diagram as Figure 9. We have

` Neg(W) → Neg( Γ, ¤ϕ :F ) (4.1)

because Neg(W) is provably equivalent to the formula 〈〈Γ 〉〉 → ¤ϕ∨¤(〈〈ΓT
¤ 〉〉 → ϕ), which implies (using

the K axiom) 〈〈Γ 〉〉 → ¤ϕ ∨ (¤〈〈ΓT
¤ 〉〉 → ¤ϕ), and then 〈〈Γ 〉〉 → ¤ϕ. Now the consistent diagram S of

Figure 4 is equivalent to S
a
+ Γ, ¤ϕ :F . Then (4.1) and Lemma 8 imply that S

a
+ W is consistent.
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Figure 4: Diagram S of Lemma 9 (2).

A
A
A

¢
¢

¢

U

Γ, ¤ϕ :Fa
A

A
A

¢
¢
¢V1

A
A

A

¢
¢
¢V2 · · ·

A
A

A

¢
¢
¢Vn

Figure 5: Diagram T of Lemma 9 (2).

A
A
A

¢
¢

¢

U

Γ, ¤ϕ :Fa
A

A
A

¢
¢
¢V1

A
A

A

¢
¢
¢V2 · · ·

A
A

A

¢
¢
¢Vn

¤

ΓT
¤ , Λ, ϕ :F

Figure 6: Diagram S of Lemma 9 (3)

A
A
A

¢
¢

¢

U

Γ1, ¤+ϕ :Fa
A

A
A

¢
¢
¢V1

A
A

A

¢
¢
¢V2 · · ·

A
A

A

¢
¢
¢Vn

Figure 7: Diagram T of Lemma 9 (3-I).

A
A
A

¢
¢

¢

U

Γ1, ¤+ϕ :Fa
A

A
A

¢
¢
¢V1

A
A

A

¢
¢
¢V2 · · ·

A
A

A

¢
¢
¢Vn

¤+

Γ1
T
¤, Λ, ϕ :F
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Figure 8: Diagram T of Lemma 9 (3-II).

A
A
A

¢
¢

¢

U

Γ1, ¤+ϕ :Fa
A

A
A

¢
¢
¢V1

A
A

A

¢
¢
¢V2 · · ·

A
A

A

¢
¢
¢Vn

¤+

Γ1
T
¤, Γ2

¤+

Γ2
T
¤, Γ3

¤+
···
¤+

Γm−1
T
¤, Γm

¤+

Γm
T
¤, Λ, ϕ :F

Figure 9: Diagram W

Γ, ¤ϕ :F

¤

ΓT
¤ , ϕ :F

Figure 10: Special path from Γ1 to ϕ :F

Γ1

¤+

Γ1
T
¤, ϕ :F

Figure 11: Special path from Γ1 to ϕ :F

Γ1

¤+

Γ1
T
¤, Γ2

¤+

Γ2
T
¤, Γ3

¤+
···

¤+

Γm−1
T
¤, Γm

¤+

Γm
T
¤, ϕ :F
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Finally we apply the maximalization (i.e., Lemma 9 (1)) to the top node of W in S
a
+ W, and we get the

required diagram T of Figure 5.
(3) We say that a diagram is special path from Γ1 to ϕ :F if and only if it is of the form as Figure 10

or Figure 11 for some valuations Γ2, . . . , Γm of L such that Γ1, Γ2, . . . , Γm are mutually distinct. There
are finitely many distinct valuations of L, say Λ1, Λ2 . . . , ΛN (N = 2k ≥ 2 because k ≥ 1); therefore the
number of all the special paths from Γ1 to ϕ :F is also finite. Then let {W1,W2, . . . ,WP } be the set of
special paths. In the following, we will show

` 〈 Neg(W1),Neg(W2), . . . , Neg(WP ) 〉⇒ Neg( Γ1, ¤+ϕ :F ). (4.2)

The negation of a special path is provably equivalent to the formla

〈〈Γ1〉〉 → ¤+
(
〈〈Γ1

T
¤〉〉 → 〈〈Γ2〉〉 → ¤+

(
· · · → ¤+

(
〈〈Γm−1

T
¤〉〉 → 〈〈Γm〉〉 → ¤+

(
〈〈Γm

T
¤〉〉 → ϕ

))))
,

and the formula Neg( Γ1, ¤+ϕ :F ) is provably equivalent to

〈〈Γ1〉〉 → ¤+ϕ.

Moreover we have

` 〈〈Λ1〉〉 ∨ 〈〈Λ2〉〉 ∨ · · · ∨ 〈〈ΛN 〉〉

becasue this formula is a tautology. Therefore we can apply Theorem 5 ( {σ1, σ2, . . . , σN} = {〈〈Λ1〉〉,
〈〈Λ2〉〉, . . . , 〈〈ΛN 〉〉}, σ1 = 〈〈Γ1〉〉, σf(i) = 〈〈Γi〉〉, τf(i) = 〈〈Γi

T
¤〉〉, ω = ϕ ), and we get (4.2). Now the

consistent diagram S of Figure 6 is equivalent to S
a
+ Γ1, ¤+ϕ :F . Then (4.2) and Lemma 8 imply that

there is a special path W such that S
a
+ W is consistent. Finally we apply the maximalization to the top

node of W in S
a
+ W, and we get the required diagram T of Figure 7 or Figure 8. QED

We fix a formula α0, and the set of subformulas of α0 is called Sub(α0). We define some conditions
on a node a of semantic diagrams as follows.

[Sub(α0)-maximality] ϕ ∈ Sub(α0) ⇐⇒ (ϕ ∈T a or ϕ ∈F a).

[¤-correctness] If a < b and ¤ϕ ∈T a, then ϕ ∈T b.

[¤-witness property] If ¤ϕ ∈F a, then the following condition holds.

∃b
(
a<¤b and ϕ ∈F b

)
. (♠)

[¤+-witness property] If ¤+ϕ ∈F a, then the following condition holds.

∃m ≥ 1,∃b1,∃b2, . . . , ∃bm

(
a<¤+

b1<
¤+

b2<
¤+

· · ·<¤+
bm and ϕ ∈F bm

)
. (♣)

We say that a node x is set-fresh if and only if the condition (y ¿ x ⇒ Set(y) 6= Set(x)) holds for any
node y. Then the following statement on a semantic diagram T is called diagram-model condition with
respect to Sub(α0), which is the key notion for our completeness proof.

• T is consistent;

• all the nodes of T are Sub(α0)-maximal and ¤-correct; and

• all the set-fresh nodes of T satisfy ¤-witness and ¤+-witness properties.

Lemma 10 If 6` α0, then there exists a semantic diagram T such that the diagram-model condition holds
with respect to Sub(α0) and the root contains the signed formula α0 :F.

Proof We define a procedure to construct semantic diagrams T0, T1, T2 . . . , such that Ti is consistent
and all the nodes of Ti are Sub(α0)-maximal and ¤-correct.
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[Construction of T0]
The one node diagram α0 :F is consistent because 6` α0. We apply the maximalization with respect to
Sub(α0) (Lemma 9 (1)). Then we obtain a diagram whose only node is Sub(α0)-maximal and contains
α0 :F. This is the diagram T0.

[Construction of Ti+1 from Ti]
If Ti satisfies the diagram-model condition with respect to Sub(α0), then we stop the procedure and
we get the required diagram. Otherwise there is a node, say a, which is set-fresh and ¤-witness (or
¤+-witness) property fails; that is, there is a formula ¤ϕ (or ¤+ϕ) ∈F a such that the condition ♠ (or
♣) does not hold. Then we apply the fulfillment of ¤ϕ : F (or ¤+ϕ : F) for a with respect to Sub(α0)
(Lemma 9 (2) or (3)), and the resulting diagram is Ti+1. The node a will be called a growing point. Note
that the fulfillment preserves Sub(α0)-maximality and ¤-correctness; the latter is shown as follows. For

example, if ¤ψ :T is an element of a node Γj
T
¤, Γj+1 in the special path, then (¤ψ :T) ∈ Γj+1 (otherwise

(¤ψ :F) ∈ Γj+1 and the diagram would be inconsistent—the negation of the diagram would be provable),

and then ψ :T is an element of the next node Γj+1
T
¤, Γj+2 .

We show that the above procedure must terminate (hence we eventually get the required diagram).
Otherwise an infinite sequence T0, T1, T2 . . . is produced. Then consider the infinite diagram

∪∞
i=0 Ti.

This infinite tree is finite branching because we can apply at most p times fulfillment for each growing
point where p is the number of ¤- or ¤+- formulas in Sub(α0). Therefore there is an infinite path which
contains infinite many growing points; however this is impossible because each growing point must be
set-fresh and the number of set-frech nodes in one path cannot be greater than 2|Sub(α0)|. QED

Lemma 11 If a semantic diagram T satisfies the diagram-model condition with respect to Sub(α0), then
the following hold for any node a of T .

(1) If ϕ ∈F a, then ϕ 6∈T a.

(2) If ϕ ∧ ψ ∈T a, then ϕ ∈T a and ψ ∈T a.

(3) If ϕ ∧ ψ ∈F a, then ϕ ∈F a or ψ ∈F a.

(4) If ¬ϕ ∈T a, then ϕ ∈F a.

(5) If ¬ϕ ∈F a, then ϕ ∈T a.

(6) If ¤+ϕ ∈T a and a < b, then ¤+ϕ ∈T b and ϕ ∈T b.

Proof
(1) If ϕ ∈F a and ϕ ∈T a, then T would be inconsistent.
(2) If ϕ ∧ ψ ∈T a and ϕ 6∈T a (or ψ 6∈T a), then ϕ ∈F a (or ψ ∈F a) by Sub(ϕ0)-maximality, and then

T would be inconsistent because ` ¬(ϕ ∧ ψ) ∨ ϕ (or ` ¬(ϕ ∧ ψ) ∨ ψ).
(3),(4),(5): Similar to (1) and (2).
(6) This is divided into the following four: (6-1) If ¤+ϕ ∈T a and a<¤b, then ¤+ϕ ∈T b. (6-

2) If ¤+ϕ ∈T a and a<¤b, then ϕ ∈T b. (6-3) If ¤+ϕ ∈T a and a<¤+
b, then ¤+ϕ ∈T b. (6-4)

If ¤+ϕ ∈T a and a<¤+
b, then ϕ ∈T b. The claim (6-1) is verified as follows. If ¤+ϕ ∈T a, a<¤b,

and ¤+ϕ 6∈T b, then ¤+ϕ ∈F b by Sub(ϕ0)-maximality, and then T would be inconsistent because
` ¬¤+ϕ∨¤(¤+ϕ∨ · · · ) (∵ ` ¤+ϕ → ¤¤+ϕ). The claims (6-2), (6-2) and (6-4) are similary shown using
the facts ` ¬¤+ϕ ∨ ¤(ϕ ∨ · · · ) (∵ ` ¤+ϕ → ¤ϕ), ` ¬¤+ϕ ∨ ¤+(¤+ϕ ∨ · · · ) (∵ ` ¤+ϕ → ¤+¤+ϕ), and
` ¬¤+ϕ ∨ ¤+(ϕ ∨ · · · ) (∵ ` ¤+ϕ → ¤+ϕ). QED

Theorem 12 (Completeness) If α0 is valid, then ` α0.

Proof Suppose 6` α0. We will show that M, w 6` α0 for some Kripke model M and some wourld w in
M. By Lemma 10, there is a semantic diagram T such that the diagram-model condition holds with
respect to Sub(α0) and the root contains the signed formula α0 :F. We define M = 〈W,R, V 〉 as follows.

• W is the set of nodes in T .
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• aRb ⇐⇒ a < b or ∃a0

(
a0 ¿ a, Set(a0) = Set(a), and a0 < b

)
.

• V (a, p) = T ⇐⇒ p ∈T a.

Using the diagram-model condition of T and (6) of Lemma 11, we can show the following:

(i) If ¤ϕ ∈T a and aRb, then ϕ ∈T b.

(ii) If ¤ϕ ∈F a, then there is a node b such that aRb and ϕ ∈F b.

(iii) If ¤+ϕ ∈T a and aR+b, then ϕ ∈T b.

(iv) If ¤+ϕ ∈F a, then there is a node b such that aR+b and ϕ ∈F b.

Then we have:

(1) If ϕ ∈T a, then M, a |= ϕ.

(2) If ϕ ∈F a, then M, a 6|= ϕ.

These are proved simultaneously by induction on ϕ, using (1)–(5) of Lemma 11 and (i)–(iv) above. The
claim (2) implies that M is the required model because the root of T contains α0 :F. QED
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