
On the Standardization Theorem for λβη-Calculus

Ryo Kashima
Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

Ookayama, Meguro, Tokyo 152-8552, Japan.

e-mail: kashima@is.titech.ac.jp

September 2001

Abstract

We present a new proof of the standardization theorem for λβη-calculus,
which is performed by inductions based on an inductive definition of βη-
reducibility with a standard sequence.

1 Introduction

The standardization theorem is a fundamental theorem in reduction theory of λ-
calculus, which states that if a λ-term M β-(or βη-)reduces to a λ-term N , then
there is a “standard” β-(or βη-)reduction sequence from M to N . In [3], the author
gave a simple proof of the theorem for β-reduction. This paper extends the result
to βη-reduction: we give a simple proof of the (weak) standardization theorem for
βη-reduction.

There have been some proofs of the standardization theorem in literature (e.g.,
[1, 2, 4, 5, 6, 7]). Compared with these, a feature of the presented proof is that we use
an inductive definition (formal theory) of βη-reducibility with a standard sequence.
In virtue of this definition, all the proof can be performed by easy inductions.

Applications of this method to proofs of other theorems (e.g., the leftmost re-
duction theorem for βη-reduction) and other calculi (e.g., term rewriting systems)
are future studies.

2 Preliminaries

λ-terms are constructed by “application” and “abstraction” from variables (λ-terms
of the form (MN) and (λx.M) are called an application and an abstraction respec-
tively). Capital letters A,B, . . . denote arbitrary λ-terms, and small letters x, y, . . .
denote arbitrary variables. M [x := N] denotes the result of substituting N for all
the free occurrences of x in M with adequate renaming of bound variables. The set

1

of free variables in M is written by FV(M). We identify λ-terms that are mutually
obtained by renaming of bound variables. In successive abstractions or applica-
tions, parentheses are omitted as follows: for example, λxyz.A = λx.(λy.(λz.A)),
and ABCD = ((AB)C)D. (See, e.g., [1] for the basic notion and terminology.)

The binary relation →βη (one-step βη-reducibility) on the set of λ-terms are
defined as usual:

(· · · ((λx.A)B) · · ·) →βη (· · · (A[x := B]) · · ·) and

(· · · (λx.(Cx)) · · ·) →βη (· · ·C · · ·)
where x 6∈ FV(C). The subterms (λx.A)B and λx.(Cx) are called βη-redexes where
the former and the latter are also called a β-redex and an η-redex respectively. Let

R be an occurrence of a βη-redex in a λ-term M . We write M
R−→βη N if and only

if N is obtained from M by contracting the redex R. The relation →`
βη (one-step

leftmost βη-reducibility) is defined as usual: M →`
βη N if and only if M

R−→βη N for
the leftmost βη-redex R in M , where a redex occurrence R1 in M is said to be to
the left of another redex occurence R2 in M if they occur as follows.

M = (· · ·R1 · · ·R2 · · ·) or M = (· · · (· · ·R2 · · ·)︸ ︷︷ ︸
R1

· · ·)

The binary relations ³βη and ³`
βη are the reflexive transitive closures of →βη and

→`
βη respectively.

Suppose that M
R−→βη N and that P and Q are subterm occurrences of M and

N respectively. We write P Ã Q if Q is a one step residual of P . For example, if

M =
(
· · ·P1 · · ·

P2︷ ︸︸ ︷(
· · · (λx. (· · ·P3 · · ·)︸ ︷︷ ︸

A

) (· · ·P4 · · ·)︸ ︷︷ ︸
B

· · ·
)
· · ·P5 · · ·

)

N =
(
· · ·P1 · · ·

Q2︷ ︸︸ ︷(
· · · (· · ·P3 · · ·)︸ ︷︷ ︸

A

[x := (· · ·P4 · · ·)︸ ︷︷ ︸
B

] · · ·
)
· · ·P5 · · ·

)

where R = (λx.A)B 6= P2 and P3 6= x, then P1 Ã P1, P2 Ã Q2, P3 Ã P3[x := B],
P4 Ã “each copy of P4 in A[x := B]”, and P5 Ã P5. (Note that the redex (λx.A)B
has no residual.) Suppose that

(· · ·X · · ·) →βη · · · →βη (· · ·Y · · ·).
We say that Y is a residual of X if

X Ã Z1 Ã · · · Ã Zn Ã Y

for some Z1, . . . , Zn (n ≥ 0). A βη-reduction sequence

M1
R1−→βη M2

R2−→βη · · · Rn−1−−−→βη Mn

is called weakly standard if the following condition is satisfied.

2

∀i [Ri+1 is not a residual of a βη-redex occurrence P in Mi such that P
is to the left of Ri]

Moreover, the sequence is called strongly standard if the following condition is sat-
isfied.

∀i,∀j > i [Rj is not a residual of a βη-redex occurrence P in Mi such
that P is to the left of Ri]

(The distinction between “weak” and “strong” appeared in [2]. Note that these two
conditions are equivalent if η-reduction does not exist.) For example, the sequence

λx.(Iy(Ix))
Iy−→βη λx.(y(Ix))

Ix−→βη λx.(yx)
λx.(yx)−−−−→βη y

is weakly and strongly standard; the sequence

λx.(Iy(Ix))
Ix−→βη λx.(Iyx)

λx.(Iyx)−−−−→βη Iy
Iy−→βη y

is not strongly standard but weakly standard; and the sequence

λx.(Iyx)
Iy−→βη λx.(yx)

λx.(yx)−−−−→βη y

is neither strongly nor weakly standard, where I = λz.z.
In this paper, we present a simple proof of the theorem:

Theorem 2.1 (Weak Standardization Theorem) If M ³βη N , then there is a
weakly standard βη-reduction sequence from M to N .

Other important theorems, which have been proved in the literature (e.g., [4, 6]),
are there:

(Strong Standardization Theorem) If M ³βη N , then there is a
strongly standard βη-reduction sequence from M to N .

(Leftmost Reduction Theorem) If M ³βη N and N is a βη-normal
form, then M ³`

βη N .

We will discuss them in Section 4.

3 Proof

We define a “formal theory” which proves “formulas” of the forms A ⇒hap B and
A⇒st B.

Axioms

(Id) A⇒hap A.

(β) (λx.A)BC1 · · ·Cn ⇒hap A[x :=B]C1 · · ·Cn, where n ≥ 0.

3

Rules
A⇒hap B B ⇒hap C

A⇒hap C
(Tr)

L⇒hap x

L⇒st x
(Var)

L⇒hap AB A⇒st C B ⇒st D

L⇒st CD
(App)

L⇒hap λx.A A⇒st B

L⇒st λx.B
(Abs)

L⇒hap λx.A A⇒st Bx

L⇒st B
(η) with the proviso:

x 6∈ FV(B) and B is not an abstraction.

We write A ³hap B (or A ³st B) if and only if the formula A⇒hap B (or A⇒st B,
respectively) is provable in this system. (“hap” and “st” stand for “head reduction
in application” and “standard”.)

Theorem 3.1 If M ³hap N , then M ³`
βη N . If M ³st N , then there is a weakly

standard βη-reduction sequence from M to N .

Proof By induction on the proof of M ⇒hap N or M ⇒st N . Here we show the
only nontrivial case: The proof is

....
M ⇒hap λx.A

....
A⇒st Nx

M ⇒st N
(η)

where x 6∈ FV(N) and N is not an abstraction. By the induction hypotheses,
there are a leftmost reduction sequence L from M to λx.A, and a weakly standard
reduction sequence S from A to Nx. We will show that there is a weakly standard
reduction sequence S+ from λx.A to N ; then the concatenation of L and S+ is the
required standard sequence from M to N . We will explain, based on an example,
the definition of the sequence S+. If a λ-term P is of the form P ′x and x 6∈ FV(P ′),
then we say that P is an η-body for x. Suppose that the weakly standard reduction
sequence S is

A
R1−→βη A

′ R2−→βη Bx
R3−→βη (λy.(Cy))x

(λy.(Cy))x−−−−−−→βη Cx
R5−→βη Nx

where

• Bx, (λy.(Cy))x, Cx, and Nx are η-bodies for x;

4

• A′ is not an η-body for x;

• B
R3−→βη λy.(Cy); and

• C
R5−→βη N .

Note that R3 = B; otherwise, reduction of R3 cannot make λy.(Cy) if B is an
application, and S is not weakly standard if B is an abstraction. Then, the weakly
standard sequence S+ is defined as follows.

λx.A
R1−→βη λx.A

′ R2−→βη λx.(Bx)
λx.(Bx)−−−−→βη B

R3−→βη λy.(Cy)
λy.(Cy)−−−−→βη C

R5−→βη N.

Lemma 3.2 (1) If M ³hap N , then MP ³hap NP .

(2) If L ³hap M ³st N , then L ³st N .

(3) If M ³hap N , then M [z := P] ³hap N [z := P].

Proof (1) By induction on the proof of M ⇒hap N . (2) If M ⇒st N is proved, then
there must be a premise M ⇒hap P for certain P . From this and the assumption
L ³hap M , we can infer L⇒hap P by the rule (Tr). Then L⇒st N is proved by the

rule that infers M ⇒st N . (3) By induction on the proof of M ⇒hap N .

Lemma 3.3 If M ³st N and P ³st y, then M [z := P] ³st N [z := y].

Proof By induction on the proof of M ⇒st N . We divide cases according to the
last inference of the proof. The substitution [z := P] and [z := y] will be represented
by [P] and [y] for short.

(Case 1): The last inference is

.... π
M ⇒hap x

M ⇒st x
(Var)

where N = x 6= z. In this case, we have

.... π and Lemma 3.2(3)
M [P] ⇒hap x

M [P] ⇒st x.
(Var)

(Case 2): The last inference is

.... π
M ⇒hap z

M ⇒st z
(Var)

5

where N = z. In this case, we have

.... π and Lemma 3.2(3)
M [P] ⇒hap P

.... assumption of the lemma
P ⇒st y

M [P] ⇒st y.
Lemma 3.2(2)

(Case 3): The last inference is

.... π
M ⇒hap AB

.... σ
A⇒st C

.... τ
B ⇒st D

M ⇒st CD
(App)

where N = CD. In this case, we have

.... π and Lem.3.2(3)
M [P] ⇒hap (AB)[P]

.... i.h. for σ
A[P] ⇒st C[y]

.... i.h. for τ
B[P] ⇒st D[y]

M [P] ⇒st (CD)[y].
(App)

(Case 4): The last inference is

.... π
M ⇒hap λx.A

.... σ
A⇒st B

M ⇒st λx.B
(Abs)

where N = λx.B. If x 6= z, then we have

.... π and Lem.3.2(3)
M [P] ⇒hap (λx.A)[P]

.... i.h. for σ
A[P] ⇒st B[y]

M [P] ⇒st (λx.B)[y]
(Abs)

where we assume that x 6∈ FV(P, y) (otherwise we rename x). If x = z, then
(λx.X)[z :=Z] = λx.X, and the induction hypothesis is not necessary.

(Case 5): The last inference is

.... π
M ⇒hap λx.A

.... σ
A⇒st Nx

M ⇒st N
(η)

where x 6∈ FV(N) and N is not an abstraction. If x 6= z, then we have

.... π and Lem.3.2(3)
M [P] ⇒hap (λx.A)[P]

.... i.h. for σ
A[P] ⇒st (Nx)[y]

M [P] ⇒st N [y]
(η)

where we assume that x 6∈ FV(P, y) (otherwise we rename x). Note that (Nx)[y] =
(N [y])x and the proviso for N [y] is satisfied. If x = z, then the induction hypothesis

is not necessary.

6

Lemma 3.4 If L ³st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn, then L ³st M [x1 :=y1, . . . ,
xm := ym]F1 · · ·Fn, where m ≥ 1, n ≥ 0 and x1, . . . , xm are distinct. (Note that
[x1 := y1, . . . , xm := ym] is a simultaneous substitution, and this will be represented
by [~y] for short.)

Proof By induction on the proof of L ⇒st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn. We
divide cases according to the last inference of the proof.

(Case 1): n = 0, and the proof is

.... π
L⇒hap AB

.... σ
A⇒st (λx1 · · ·xm.M)y1 · · · ym−1

.... τ
B ⇒st ym

L⇒st (λx1 · · ·xm.M)y1 · · · ym.
(App)

If m ≥ 2, then by the induction hypothesis for σ, there is a proof

.... σ
′

A⇒st (λxm.M)[~y′]

where [~y′] = [x1 := y1, . . . , xm−1 := ym−1]. If m = 1, then we define σ′ = σ. In any
case, the proof σ′ must be of the form

.... φ
A⇒hap λxm.C

.... ψ

C ⇒st M [~y′]

A⇒st λxm.(M [~y′]).
(Abs)

(Note that xm 6∈ {y1, . . . , ym−1}; otherwise we rename xm.) Then we have

.... (†)
L⇒hap C[xm :=B]

.... (‡)
C[xm :=B] ⇒st M [~y]

L⇒st M [~y]
Lem. 3.2(2)

where (†) is

.... π
L⇒hap AB

.... φ
A⇒hap λxm.C

AB ⇒hap (λxm.C)B
Lem.3.2(1) (axiom β)

(λxm.C)B ⇒hap C[xm :=B]

L⇒hap C[xm :=B]
(Tr)×2

and (‡) is obtained by ψ, τ and Lemma 3.3.

(Case 2): n ≥ 1, and the proof is

.... π
L⇒hap AB

.... σ
A⇒st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn−1

.... τ
B ⇒st Fn

L⇒st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn.
(App)

7

In this case, we have

.... π
L⇒hap AB

.... i.h. for σ
A⇒st M [~y]F1 · · ·Fn−1

.... τ
B ⇒st Fn

L⇒st M [~y]F1 · · ·Fn.
(App)

(Case 3): The proof is

.... π
L⇒hap λz.A

.... σ
A⇒st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fnz

L⇒st (λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn
(η)

where z 6∈ FV((λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn). If M [~y]F1 · · ·Fn is not an abstrac-
tion, then we have

.... π
L⇒hap λz.A

.... i.h. for σ
A⇒st M [~y]F1 · · ·Fnz

L⇒st M [~y]F1 · · ·Fn.
(η)

Note that z 6∈ FV(M [~y]F1 · · ·Fn) ⊆ FV((λx1 · · ·xm.M)y1 · · · ymF1 · · ·Fn). IfM [~y]F1 · · ·Fn

is an abstraction, then n = 0, M = λv.B, and σ is
.... σ

A⇒st (λx1 · · ·xmv.B)y1 · · · ymz.

where v 6∈ {x1, . . . , xm, y1, . . . , ym} (otherwise, we rename v). Then we have

.... π
L⇒hap λz.A

.... i.h. for σ
A⇒st B[~y, z]

L⇒st λz.(B[~y, z]) = (λv.B)[~y]
(Abs)

where [~y, z] = [x1 :=y1, . . . , xm :=ym, v :=z].

We consider an inference rule:

L⇒hap λx.A A⇒st Bx

L⇒st B
(η+) with the proviso: x 6∈ FV(B).

This is an extension of (η) rule (B may be an abstraction).

Lemma 3.5 The rule (η+) is admissible; that is, if L ³hap λx.A, A ³st Bx, and
x 6∈ FV(B), then L ³st B.

Proof If B is not an abstraction, then (η+) is just the rule (η). If B = λy.C, then
we have

L⇒hap λx.A

A⇒st (λy.C)x

A⇒st C[y := x]
Lem.3.4

L⇒st λx.(C[y := x]) = λy.C.
(Abs)

Note that x 6∈ FV(C).

8

Lemma 3.6 If M ³st N and P ³st Q, then M [z := P] ³st N [z := Q].

Proof Similar to the proof of Lemma 3.3 (y = Q). The only difference is that
N [z :=Q] may be an abstraction, in Case 5, that is in contravention of the proviso
of (η) rule. In such a case, we use the rule (η+) (Lemma 3.5) to inferM [P] ³st N [Q].

Lemma 3.7 If L ³st (λx.M)NF1 · · ·Fn, then L ³st M [x := N]F1 · · ·Fn, where
n ≥ 0.

Proof Similar to the proof of Lemma 3.4. (m = 1 and ym = N . In Case 1, we use

Lemma 3.6 instead of 3.3. In Case 3, we use (η+) rule (Lemma 3.5).)

Lemma 3.8 If L ³st M →βη N , then L ³st N .

Proof By induction on the proof of L⇒st M . We divide cases according to the last

inference of the proof. Let R be the occurrence of the βη-redex such that M
R−→βη N .

(Case 1): The proof is

.... π
L⇒hap AB

.... σ
A⇒st C

.... τ
B ⇒st D

L⇒st CD
(App)

where M = CD.
(Subcase 1-1): R = CD; that is, C = λx.E, M = (λx.E)D and N = E[x := D].

This is a special case of Lemma 3.7.

(Subcase 1-2): R is in C; that is, C
R−→βη C

′ and N = C ′D. In this case, we have

.... π
L⇒hap AB

.... i.h. for σ
A⇒st C

′

.... τ
B ⇒st D

L⇒st C
′D.

(App)

(Subcase 1-3): R is in D. This is similar to Subcase 1-2.
(Case 2): The proof is

.... π
L⇒hap λx.A

.... σ
A⇒st B

L⇒st λx.B
(Abs)

where M = λx.B.
(Subcase 2-1): R = λx.B; that is, B = Nx, M = λx.(Nx), and x 6∈ FV(N).

This is just the rule (η+) (Lemma 3.5).

9

(Subcase 2-2): R is in B; that is, B
R−→βη B

′, and N = λx.B′. Then we have

.... π
L⇒hap λx.A

.... i.h. for σ
A⇒st B

′

L⇒st λx.B
′.

(Abs)

(Case 3): The proof is

.... π
L⇒hap λx.A

.... σ
A⇒st Mx

L⇒st M
(η)

where x 6∈ FV(M) and M is not an abstraction. In this case, we have

.... π
L⇒hap λx.A

.... i.h. for σ (because Mx→βη Nx)
A⇒st Nx

L⇒st N.
(η+) (Lem. 3.5)

Note that x 6∈ FV(N) ⊆ FV(M).

Lemma 3.9 M ³st M .

Proof By induction on the structure of M .

Theorem 3.10 If M ³βη N , then M ³st N .

Proof Suppose M = M1 →βη M2 →βη · · · →βη Mk = N . We can show M ³st Mi

for i = 1, . . . , k, by Lemmas 3.9 and 3.8.

Now the Weak Standardization Theorem 2.1 is obvious by Theorems 3.1 and
3.10.

4 Remarks

(1) It seems that we can prove, by the similar proof of Theorem 3.1, the strong
version of it: If M ³st N , then there is a strongly standard βη-reduction sequence
from M to N . Then the Strong Standardization Theorem for βη-reduction is proved.

(2) In the case of β-reduction, the Leftmost Reduction Theorem is an easy corollary

to the Standardization Theorem because we have the following: If M
R1−→β · · · Rn−→β

N is a standard β-reduction sequence and N is a β-normal form, then R1, . . . , Rn

are all the leftmost occurrences of β-redexes. However, this does not hold for βη-
reduction: there are counterexamples

λx.
(
(λy.(yy))(Ix)

)
Ix−→βη λx.

(
(λy.(yy))x

)
λx.((λy.(yy))x)−−−−−−−−→βη λy.(yy)

10

and

λx.
(
I(λy.(yy))x

)
I(λy.(yy))−−−−−→βη λx.

(
(λy.(yy))x

)
(λy.(yy))x−−−−−−→βη λx.(xx)

which are strongly standard and end with βη-normal forms, but neither of them is
a leftmost reduction sequence. Note that these can be regarded as the sequences

λx.
(
(λy.(yy))(Ix)

)
Ix−→βη λx.

(
(λy.(yy))x

)
(λy.(yy))x−−−−−−→βη λx.(xx)

and

λx.
(
I(λy.(yy))x

)
I(λy.(yy))−−−−−→βη λx.

(
(λy.(yy))x

)
λx.((λy.(yy))x)−−−−−−−−→βη λy.(yy),

neither of which is weakly standard; then these are not counterexamples. The

overlap of redexes λx.
(
(λy.(yy))x

)
causes a problem.

References

[1] H.P. Barendregt, The Lambda Calculus (North-Holland, 1984).

[2] R. Hindley, Standard and normal reductions, Trans. Amer. Math. Soc. 241 (1978)
253-271.

[3] R. Kashima, A proof of the standardization theorem in λ-calculus, Research
Reports on Mathematical and Computing Sciences C-145, (Tokyo Institute of
Technology, 2000).
http://www.is.titech.ac.jp/research/research-report/C/C-145.ps.gz

[4] J.W. Klop, Combinatory Reduction Systems, Mathematical Center Tracts 127,
Amsterdam (1980).

[5] G. Mitschke, The standardization theorem for λ-calculus, Zeitshr. Math. Logik
Grundlag. Math. 25 (1979) 29-31.

[6] M. Takahashi, Parallel reductions in λ-calculus, Information and Computation
118 (1995) 120-127.

[7] H. Xi, Upper bounds for standardizations and an application, J. Symbolic Logic
64 (1999) 291-303.

11

