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Abstract. The logic CD is an intermediate logic (stronger than intuition-
istic logic and weaker than classical logic) which exactly corresponds to the
Kripke models with constant domains. It is known that the logic CD has a
Gentzen-type formulation called LD (which is same as LK except that (—D)
and (— =) rules are replaced by the corresponding intuitionistic rules) and that
the cut-elimination theorem does not hold for LD. In this paper, we present a
modification of LD and prove that the cut-elimination holds for it. From this
result we obtain a “weak” version of cut-elimination theorem for LD, saying
that all “cuts” except some special forms can be eliminated from a proof in
LD. Some properties of CD are obtained as its corollaries.



In this paper, we present a Gentzen-type cut-eliminable system for a natural variant
of intuitionistic logic, called CD following [2]. CD is characterized by Kripke models with
constant domains, from which the name CD comes. Syntactically, CD is obtained from

intuitionistic logic by adding
Vz(A(z)VB)DVzA(z)VB

where = does not ;)ccur freely in B. The importance of CD is well-established (e.g. its
close relation to the notion of forcing in set theory ([1],[4]) ), and so this intermediate logic
(stronger than intuitionistic logic and weaker than classical logic) is extensively studied
in [1] ~ [8] and [11].

CD also has a quite natural Gentzen-type formulation LD, that is, LK with (—D) and
(——) rules replaced by the corresponding intuitionistic (LJ) rules.! But unfortunately,
the cut-elimination theorem does not hold for LD ([5], [6]). Moreover, it is known that
even if we add any finite number of inference rules to LD, we can not get a cut-free
system for CD ([5]). In this paper, we present a certain non-standard extension of LD,
and prove the cut-elimination theorem for it. Moreover, we prove a weak version of cut-
elimination theorem for LD. From these cut-elimination theorems, we also obtain some
useful corollaries.

In section 1, we give the definition of LD and show some preliminary results. In
section 2, we give a technical extension of LD called ¢-LD. Section 3 is devoted to prove
the cut-elimination theorem for c-LD. In section 4, we prove the equivalence between LD
and c-LD. We then show a version of “cut-elimination theorem” for LD which says that
all “cuts” except some special forms can be eliminated from a proof in LD. In section 5,

we apply our cut-elimination theorems to show the following properties of CD:

'Our LD is a little different from one with the same name in [11].



o If A is a theorem of CD and A has no negative occurrence of disjunction, then A is
a theorem of intuitionistic logic.

e If AVB is a theorem of CD, then either A or B is a theorem of CD. (Disjunction

property.)
e If 3z A(z) is a theorem of CD, then A(t) is a theorem of CD for some term . (Ex-

istence property.)
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1 Sequent calculus LD

Our language consists of the following symbols:

1) constant symbols: cg, ¢y, ...... ;

2) free variables: aq,a,...... ;

3) bound variables: zq, 2, ...... ;

4) for each n(n =0, 1,...) , n-ary predicate symbols: pg,p},......;

5) logical connectives: L(falsefood), A(conjunction), V(disjunction), D(implication);

6) quantifiers: V(universal quantifier), 3(existential quantifier);

7) auziliary symbols: (, ), comma, —.

Let A be a sequence of symbols, and let v;,v; be symbols. Then by A[v,/v;] we mean
the expression obtained from A by replacing all the occurrences of v; by v,.

Constant symbols and free variables are called terms.

Formulas are defined inductively as follows:

1) If p is an n-ary predicate symbol, and ¢, ...,t, are terms, then pt;...1,, is a formula;

2) 1 is a formula;

3) If A and B are formulas, then (AAB), (AVB) and (ADB) are formulas;

4) If A is a formula, a is a free variable, and z is a bound variable not occurring in A,
then VzA[a/z] and 3z A[a/z] are formulas.
When there is no fear of confusion, we will omit parentheses in formulas. The negation

symbol “=” is not used formally, but it may be introduced by
~A=ADL.

If I' and A are finite (possibly empty) sequences of formulas separated by commas,
then I' = A is called a sequent, and ' and A are called the antecedent and succedent of

this sequent, respectively.



We will use letters s,t,... to represent terms, a,b,c,... to represent free variables,
z,y,2,... to represent bound variables, A,B,C,... to represent formulas, T,A,... to
represent sequences of formulas, and S,7,... to represent sequents.

Sometimes, we write A(a) to denote formula A with some specified occurrences of
free variable a in A. Then, A(v) means the expression obtained from A by replacing the
specified occurrences of a by v.

Now, we define sequent calculus LD. The azioms of LD are
A— A

and

1l - .

The inference rules of LD are as follows:

r-A r—-A
(w—) (—w)
A,F—’A F_)AsA
AJAT—- A '=AAA
(c) (=)
A,F—"A F*A)A
ILABII—= A I'- AA B, S
(e=) (—e)
IB,AIl- A ' A,B,AY
AT - A B,T—- A
(A—1) (A—2)
AAB,T = A AAB,T' = A
'—=AA n—-x,B
(=)

[,11 - A, T, AAB
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AT - A B,I1- X
(V=)
AVB,I''l1 - A%
- AA r-A,B
(—v1) (—v2)
I' - A,AVB I'- A AVB
- AA BII-%
(>-)
ADB,I'NII = A, Z
Al - B
(—=>)
I'- ADB
At),T - A I' - A A(e)
(V—) (—V)
VzA(z), [ = A I' = A,VzA(z)
where a does not occur in the lower sequent.
A(a),T = A ['— AA(Y)
(3-) (—3)
dzA(z),T = A ' = A,3zA(z)
where a does not occur in the lower sequent.
'—=AA All- %
CUT
LII-AY



The Proofs in LD are defined inductively as follows:
1) if § is an axiom of LD, then § is a proof of § in LD;
2) if P, is a proof of S; in LD, and
Sy

Jo——

S
is an inference rule of LD, then

Py
J—
S

is a proof of § in LD;
3) if P, and P, are proofs of S, and S, , respectively, in LD, and
S1 S

J
S

is an inference rule of LD, then
P P,
S

J

is a proof of § in LD.

A cut-free proof means a proof which does not contain CUT.

If there is a proof P of S in LD, we say § is provable in LD.

Examples of proofs in LD:



A(a) — A(a) B—- B

(V=)
A(e)VB — A(a), B
(V—)
(o) Vz(A(z)VB) — A(a), B
( v: Vz(A(z)VB) — B, A(a)
( " Va(A(z)VB) - B,VzA(z)
—V1)
. Vz(A(z)VB) — B,VzA(z)VB
( =) Vz(A(z)VB) — VzA(z)VB, B
—\2)
() Vz(A(z)VB) — VzA(z)VB,VzA(z)VB
- Vz(A(z)VB) — Yz A(z)VB
(—=2)

— Vz(A(z)VB)D(Vz A(z)VB)

where a does not occur in VzA(z), B.

() VzA(z) — Yz A(z)

: (as above) (w } C,VzA(z) — Yz A(z)

—D)

Vz(A(z)vVB) — B,VzA(z) VzA(z) —» COVzA(z)

CUT

Vz(A(z)VB) - B,COVzA(=z)

where a does not occur in Yz A(z), B.

If we extend LD by adding the inference rule:
ATl'-AB

(— Dirx)
I' > AADB ,

then we get sequent calculus LK for classical logic. If we replace (—V) in LD by

' = A(a)

(= Vi)
' - VzA(z)

where @ does not occur in the lower sequent, then we get sequent calculus LJ/ for intu-
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itionistic logic ([10}).

The following results are well-known.

Proposition 1.1 ([2], [3], [6], [8], [11]) The following four conditions are equivalent:
1. — A is provable in LD;

2. A is provable in intuitionistic predicate logic with the additional aziom schema:

Vz(B(z)vC)D(VzB(z)VC);

3. A is valid in any Kripke-model having a constant domain;

4. A is valid in any complete Heyting algebra satisfying the following V,A-distributive
law:

A@ive) =ApnVa

i€l i€l
When one of these conditions holds, we say A is a theorem of CD (CD means “Con-

stant Domains™).

Proposition 1.2 ([5], [6]) The cut-elimination theorem fails for LD, i.e. there is a

sequent which is provable in LD but not provable without a CUT.

Actually, a sequent

Vz(A(z)VB) — B,COVzA(z)

is a counter example of the cut-elimination theorem for LD. Moreover it is shown in [5)
that: even if we add any finite number of inference rules to LD, we can not get a cut-free

system for CD.



2 Introducing c-LD

In this section, we define a system c¢-LD which is a non-standard extension of LD. For
this definition, we introduce a notion of “connections” which express “the dependency
between the formulas in the antecedent and the formulas in the succedent of a sequent”.

With the help of this notion, we can extend (—D) rule in LD to a rule like (— Drx).

From now on, we use superscripts to distinguish occurrences of formulas in a sequent.
For example, a seq.uent
A%, A — A?
has three occurrences of the same formula A.
We introduce a binary relation ~, called connection, between the occurrences of for-
mulas in the antecedent and those in succedent of a sequent. To denote, for instance, the

connected pairs A! ~ C%, B3 ~ C* and B® ~ C% in a sequent

Al A% B® - C1,C5

we write |
Al AT B3 CYC° .
L
A sequent with connections is also called a sequent.
Now, we define the system c-LD which derives sequents with connections (“c” means
“Connections”).

The axioms of c-LD are

N
{
N

and

[
i
=



c-LD has nineteen inference rules, each of which corresponds to a rule in LD.
A rule essentially different from the corresponding one in LD is

A\ T = A, B?
(—=>+)

- A,(ADB)?
where for any formula 4 in I" and 6 in A,
1) A £ § at the upper sequent,
2) 4 ~ 6 at the lower sequent & v ~ 6 at the upper sequent,
3) 7 ~ (ADB)? at the lower sequent < v ~ B? at the upper sequent.
(ADB)? is called the principal occurrence of this inference. Recall that we do not admit

the inference

AT = A,B

I'-A,ADB
in LD unless A is empty. But by (—=D+), wecaninfer (I' = A, ADB ) from ( AL,T — A,B)
if A? o § for any formula § in A.
Other inference rules in c-LD have the same names and similar forms to the corre-

sponding ones in LD, as follows:

o (w—):

'r-A

(w—)

AL,T—- A
where the connections between I' and A are inherited (i.e.
v ~ & at the lower sequent & 4 ~ §é at the upper sequent
for any formulas v in I’ and 6 in A), and A! may or may not be connected to any formula

§ in A at the lower sequent. A! is called the principal occurrence of this inference.
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¢ (—w): symmetric to (w—).

o (c—):

AL AT = A

(=)

AT - A
where the connections between I' and A are inherited, and for any formula é in A,
A% ~ § at the lower sequent <& (A! ~ § or A% ~ §) at the upper sequent.
A% is called the principal occurrence, and A! and A? are called the contraction occurrences

of this inference.

¢ (—c): symmetric to (¢—).

o (e—):

AL BT — A

(e—)

B}, AL,II = A
where the connections between (I',IT) and A are inherited, and for any formula § in A,
1) A! ~ § at the lower sequent & A! ~ § at the upper sequent,

2) B? ~ § at the lower sequent < B? ~ § at the upper sequent.

We will use a superscript in common for some different occurrences of a formula which

uniquely correspond each other, as above.

¢ (—e): symmetric to (e—).

o (A—1):
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ALT - A
(A—1)

(AAB)2,T' - A
where the connections between I' and A are inherited, and for any formula § in A,
(AAB)? ~ § at the lower sequent <& A! ~ § at the upper sequent.

(AAB)? is called the principal occurrence of this inference.

e (A—2): similar to (A—1).

° (—»/\):
I - AA? -3, B?
(—=A)
III—= AL, (A/\B)3
where

1) the connections between I' and A are inherited,

2) the connections between II and ¥ are inherited,

3) there is no connection between I' and ¥ at the lower sequent,

4) there is no connection between IT and A at the lower sequent,

5) for any formulas  in T" and = in II,
5-1) v ~ (AAB)? at the lower sequent <> v ~ A! at the left-side upper sequent,
5-2) w ~ (AAB)? at the lower sequent < m ~ B2 at the right-side upper sequent.

(AAB)? is called the principal occurrence of this inference.

e (V—): symmetric to (—A).

¢ (—V1): symmetric to (A—1).
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o (—V2): symmetric to (A—2).

o (O—):
I' - A A? B2l - %
(O—)
(ADB)3,T, 11 — AT
where

1) the connections between I' and A are inherited,

2) the connections between II and ¥ are inherited,

3) there is no connection between II and A at the lower sequent,

4) there is no connection between (ADB)? and A at the lower sequent,

5) for any formulas 4 in I and ¢ in £, |
5-;) (ADB)3? ~ o at the lower sequent & B? ~ ¢ at the right-side upper sequent,
5-;) v ~ o at the lower sequent <& (y ~ A?! at the left-side upper sequent and

B? ~ g at the right-side upper sequent).

(ADB)? is called the principal occurrence of this inference.

o (V—):
ARLT — A

(V=)
VzA(z)?,T — A

where the connections between I' and A are inherited, and for any formula § in A,
VzA(z)? ~ 6 at the lower sequent & A(t)' ~ § at the upper sequent.

VzA(z)? is called the principal occurrence of this inference.

o (—=V):
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I'— A A(a)!

(—

' = A,VzA(z)?
where a is a free variable not occuring in the lower sequent, the connections between I’
and A are inherited, and for any formula v in T,
v ~ Yz A(z)? at the lower sequent < v ~ A(a)! at the upper sequent.

VzA(z)? is called the principal occurrence of this inference.

¢ (3—): symmetric to (—V).

e (—3): symmetric to (V—).

o CUT:

- A Al AATI- X
CUT:

NoI—AX

where

1) the connections between I" and A are inherited,

2) the connections between II and ¥ are inherited,

3) there is no connection between II and A at the lower sequent,

4) for any formulas 4 in I" and ¢ in I,

4 ~ o at the lower sequent & (y ~ A! at the left-side upper sequent and A® ~ &

at the right-side upper sequent).

A! and A? are called the cut occurrences of this inference.

Notice

14



1. In ¢-LD, we don’t adopt the axiom
1L —

for some technical reasons. Then it is obvious that if ' — A is provable in ¢-LD then A
is not empty.

2. In (D—) and CUT, it may happen that: for some formulas 4 and o, v # o al the
upper sequents but ¥ ~ o at the lower sequent. Such situation does not happen in other

inference rules.

Examples of proofs in c-LD (these sequents are not cut-free provable in LD

([5):(6D)): —
A(a) — A(a) B— B
(V=)
l— |
A(a)VB — A(a), B
(V=)
[
(oo Vz(A(z)vB) — A(a), B
’ [ |
(W) Vz(A(x)VB) — B, A(a)
1
(102) Vz(A(z)VB) — B,VzA(z)
w—)
[— 1
C,Vz(A(z)VB) — B,VzA(z)
(—=D+) '

[— |
Vz(A(z)VB) — B,CoVzA(z)

where a does not occur in VzA(z), B.
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1 1

A(a) — A(a) A(a) — A(a) 1= 1
(=3 (>-)
[ —
- A(a) — FzA(z) A(@)DL, A(a) — L
l (— 1 | l
A(a)V(A(a)D1),A(a) — JzA(zx), L
(V=) ‘
' I I 1 ﬂ
(o) Vz(A(z)V(A(z)D1)), A(a) — JzA(z), L
Ala) Ve( AV A)SL)) — EIa,!A(a:),l.L
(3-)
am/la(x),vx(A(x)vTA(x)al)) - aéA(x),ll
(+>4)

Va:(A(:z:)VI(A(a:)D.L)) — Ba!A(a:), JzA(z)DL

where a does not occur in VzA(z).

Theorem 2.1 Suppose P is a proof of ' = A in LD. Then from P, we can construct a
proof P' of ' = A’ with some connections in c-LD where:
A'=A ifA is not emply,

A'=1 if A is empty.

Proof We prove this theorem by induction on the number of inference rules in P.
If P is of the form
1P : P,
nN—-CA B, —

(>—)
ADB,ILY - C ,

then by induction hypothesis, we can get the following two proofs in c-LD:
2Py 1 P
NI—-C,A and B,X— L.
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So we can get P’ as follows:
: Py : P,
nI-C,A B,Y— 1

(5=}
cup AT Gl L-C

ADB,ILE — C,C

(—<)

ADB,ILY —-C

If P is of other forms, we can construct P’ similarly or more easily. D

The converse of this theorem will be proved in section 4.
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3 Cut-elimination theorem for c-LD

In this section, we prove the cut-elimination theorem for ¢-LD. Our proof is based on the
ordinary proof of the cut-elimination theorem for LK ([10]), but it requires a little more

sophisticated argument to treat the connections.

Let § and &’ be sequents with connections. If &' can be obtained from S by some

applications of inference rules (e—) and (—e) in ¢-LD, then we say S’ is a permutation of
S.

Let S be a sequent with connections and S’ be a permutation of S where:

e S=T=A;

o 8" =T, Ty,..; T = A, 4y, ..., A, (m,n>0,T; and A; may be empty);

o each I'; (0 £ 7 £ m) is a subsequence of T, i.e. the order of formulas in I'; is the
same as in [';

o each A; (0 < 7 < n) is a subsequence of A.
Then we say 8’ is an (m,n)-permutation of S . To denote the boundaries between

[y, T4, «..; ' and between Ag, Ay, ..., A,, we often write S’ as:
Fo; Fl; eeoy Fm — Ao; Al; eey An.

Obviously, the (0,0)-permutation of Sis S .

Lemma 3.1 Suppose P is a cut-free proof of a sequent S in c-LD, and T is a (1,0)-
permutation of S whereS = (' =2 A ), T = (Tg;Ty — A ), and there is no connection
between I'y and A at T. Then from P, we can construct a cut-free proof P' in c-LD of

(To — A ) with the same connections between 'y and A as T .
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Proof This lemma is proved by induction on the number of inference rules in P. We
only consider the following case: P is of the form
Y PPy
O — AA! B2 ll—= %

(>—)
(ADB)3,0,l1 - AT .

We call the above left-side upper sequent S; and right-side upper sequent S, .

Subcase 1: (ADB)? is in Tg at 7T, i.e. T is of the form
(ADB)?,0,1y; 0,,IT) — A, X.

Sub-subcase 1-1: B? ~ o at S, for some formula ¢ in . Then consider two (1,0)-
permutations 7; of §; and 7; of S2 where

T, = 0g;0; — A, 4,

T, = B,Il; 11, — X.
There is no connection between ©; and (A, A) at 7; and between II; and ¥ at 7, . So by
induction hypotheses, we can get the following two proofs:

: P Py
Qo — AA, B Ily—- X,

and we can get P’ as:

Py i Py

(5—)
ADB,@Q, Ho - A,E .

Sub-subcase 1-2: B? o o at S, for any formula o in . Then consider a (1,0)-
permutation 73 of S, where

7, = llg; B,1I; — X.
Then, there is no connection between (B,II,) and ¥ at 7; . So by induction hypothesis,
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we can get the following proof:
1Py
Ilp — %,
and we can get P’ as:

. !
1 Py

some (w—),(—w),(—e)

ADB, 00, Ho - A,Z .

Subcase 2: (ADB)®is in T'; at T, i.e. T is of the form
eOs HO; (ADB)sa 619 Hl — Aa L.

Then consider a (1,0)-permutation 7; of S; where
T, = Ip; B,II; — Z.
There is no connection between (B,II;) and ¥ at 7; . So by induction hypothesis, we can
get the following proof:
: P
IIp — %,
and we can get P’ as:

P,

some (w—),(—w),(—e)

@o,no—> A,E .

If P is of other forms, we can construct P’ similary. O

Lemma 3.2 Suppose P is a proof of I' = A in ¢-LD, a is a free variable, and t is a

term. Then from P, we can construct a proof P’ of T'[a/t] — Ala/t] (sequent obtained by
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replacing all the occurrences of a by t) in c-LD where P’ has the same structure as P, i.e.

differences between P and P’ are only the differences of some free variables.
Lemma 3.3 Suppose P is a cut-free proof of a sequent S in ¢-LD, § is of the form
' = Ao, LY A, .., L7, Ag(n > 0)

and A is a formula. Then from P, we can construct a cut-free proof P' of a sequent &'
in ¢-LD where

§' = T = Ag, AL Ay, ..., A" A,
and for any formula v in T and § in Do, Dy, ..., Ay,

Ny~éatS @ y~b6ats,

2 y~A aS @y~L atS (i =1,..n)

Lemma 3.2 and 3.3 are proved by easy induction on the number of inference rules in

P. So we omit these proofs.

To prove the cut-elimination theorem for ¢-LD, we introduce a new inference rule
called MIX.

Let I' = Ap; Ay be a (0,1)-permutation of a sequent I' = A, and Ilo,II; — X be a
(1,0)-permutation of a sequent II — ¥. Moreover, we assume that A; and II; are the
(possibly empty) sequences consisting only of a formula A. Then, the following inference
rule is called MIX:

r-=A n-3
MIX

[, Iy = Ap, =
where for any formulas 4 in I, 8 in Ap, mp in Ilp, and ¢ in I,

1) 4 ~ & at the lower sequent <> v ~ 8, at the left-side upper sequent,
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2) ¥ ~ o at the lower sequent < (v ~ A* for some A’ in A, at the left-side upper
sequent and A’ ~ o for some A’ in II, at the right-side upper sequent),

3) mo % o at the lower sequent,

4) w9 ~ o at the lower sequent & my ~ o at the right-side upper sequent.

A is called the miz formula, and the occurrences of A in A; at the left-side upper sequent
and those in II; at the right-side upper sequent are called the miz occurrences of this
MIX.

In the ordinary proof of the cut-elimination theorem for LK, “mix” deletes all occur-
rences of its “mix formula” at once. But in our case, MIX can delete any number of mix
formulas. This difference is essential for our proof.

CUT is a special form of MIX, and MIX can be replaced by some applications of
(w—),(—w),(c—),(—c),(e—),(—€) and CUT. Hence, in the rest of this section, we con-

sider only MIX instead of CUT.

In a proof
'-A I-X
MIX

[ — A, Y
we define the grade of this MIX to be the number of logical connectives and quantifiers
occurring in the mix formula of this MIX. When Ay = A and Iy = II, we define grade=0.
In any inference rule, if A! is an occurrence of a formula in the lower sequent and it
is not the principal occurrence, then there is a corresponding occurrence A! in the upper

sequent, and we write
(A! in the lower sequent) <1 (4’ in the upper sequent).

Moreover, in (¢c—) and (—c), if A! is the principal occurrence in the lower sequent and
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A? is one of the contraction occurrences in the upper sequent, then we write
(A! in the lower sequent) <1 (A? in the upper sequent)

too.
In the above proof, we define the lefi-rank of this MIX to be the maximal length of

the following sequence of the occurrences of the mix formula:

mix occurrence A
in the left-side upper | 4(Ain..)<q..<q(4din..)

sequent of this MIX

in P, . If Ag = A, we define left-rank=0. Similarly, we define the right-rank of this MIX

to be the maximal length of the sequence:

mix occurrence A
in the right-side upper | 94(Ain..)q..<(Ain..)
sequent of this MIX

in P, . The rank of this MIX is defined as
rank = left-rank + right-rank.

It is obvious that, if a MIX has left-rank=0 or right-rank=0, then the MIX can be

replaced by some applications of (w—), (—w), (c—), (—¢), (e—) and (—e).

The following lemma is the core of the cut-elimination theorem.

Lemma 3.4 Suppose P is a proof of a sequent S in c-LD where P contains no CUT
and only one MIX at the last inference. Then from P, we can construct a proof P’ of S
in c-LD where P’ contains no CUT and no MIX. (The latter S has not only the same

occurrences of formulas but the same connections as the former S .)
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Proof We prove this lemma by double induction on the grade g and rank r of the MIX
in P.
We assume that P is of the form
1P, PP,
S1 S

MIX
S,

and the mix formula is A.

Case 1: r < 2, i.e. left-rank=0 or right-rank=0.

As mentioned above, we can get the proof P’ without a MIX.

Case 2: r = 2.
If left-rank=0 or right-rank=0, we can get P’ . So we assume that left-rank=right-
rank=1.

We distingush cases according to the form of P; and P, .

Subcase 2-1: S, is the axiom A — A ,i.e. P is of the form
: Py

A—- A All-%
MIX

All- X

(since the right-rank=1, S, is of this form). In this case, we take P, for P’ .

Subcase 2-2: &, is the axiom L — A ,i.e. P is of the form
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2P,
12 A ALl - Z

1, II-2 .

Sub-subcase 2-2-1: A! ~ B for some formula B in ¥ at S; . Then we can get P’ as

1l - B

some (w—), (—w), (e—), (—e€)

1,11 - ¥ BY
When we apply (w—) and (—w), we can assign arbitrary connections to the principal

occurrences. So we can assign the same connections as S to this last sequent.

Sub-subcase 2-2-2: A! £ B for any formula B in ¥ at S; . Then by lemma 3.1, we
can get the proof:
: Py
N-3

which contains no MIX. So by (w—), we can get the required proof P’ .

Subcase 2-3: the last inference of P; is (—w), i.e. P is of the form

: Pia
- A 1P,
I'=AA All-=%
MIX
LII—-AY .

Then we can get P’ as
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: P
r—-A

some (w—), (—w), (e—), (—e)

I,II1-A,X

Subcase 2-4: S, is the axiom A — A. This case is similar to subcase 2-1.

Subcase 2-5: S; is the axiom L1 — B, i.e. P is of the form
o

'—-A1 l1—-B
MIX

r-A,B.
Then by applying lemma 3.3 to P, , we can get P’ as:
: P

'-A,B.

Subcase 2-6: the last inference of P, is (w—). This case is similar to subcase 2-3.

Subcase 2-7: the last inferences of P; and P, are (—A) and (A—1), respectively, i.e.

P is of the form

P Pia : P2 : Pact
- AB ©—-AC BNl -X
(—A) (A—1)
MIX e — A A, BAC BAC,I1 - &

0,11 » AAT .

Then consider the following proof Q:
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P : Pany

T - A,B B,I =%
MIX

IL'n-AX%

some (w—),(—w),(e—),(—e)

I[,o,II = AAY.
To this last sequent, we can assgin the same connections as § , and the grade of this MIX

is less than g. So by induction hypothesis, we can get the required proof P’ .

Subcase 2-8: the last inferences of P, and P, are (—A) and (A—2).
Subcase 2-9: the last inferences of P; and P, are (—V1) and (V—).
Subcase 2-10: the last inferences of P; and P, are (—V2) and (V—).

Subcase 2-8 ~ 2-10 are similar to subcase 2-7.

Subcase 2-11: the last inferences of Py and P, are (—>+) and (D—), i.e. P is of the

form
: P : Paa P P22
BL.T'— A, C? ®— A B C{LII— %
(+>+4) (>-)
I'- A,BOC B>C,0,l1 - AT
MIX

r,0,T— AAY .
We call the above three sequents (B',I' — A, C?), (@ — A, B3) and (C4,11 - £) by T ,
7; and 7; , respectively.

We first assume that B! ~ C? at 7, . Then consider the following proof Q:
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: P2y :Pia

O — A,.B3 Bl,I‘ — A,02 : Pz-z
MIX
0, = AA,C CLII - X
MIX
o,I,11 = A,A,S

some (—e),(—e)

r,o,I1 - AJAD .

We can show that for any formulasyin ', § in A, 0in @, Ain A, 7 in Il and ¢ in L, the
following 1) ~ 9) hold in both P and Q:

1) 4 ~ 6 at the last sequent & y~ 6 at T .

2) v 4 X at the last sequent.

3) ¥ ~ o at the last sequent & (v~ C?at 7 and C*' ~ g at T3 ).

4) 0 + 6 at the last sequent.

5) @ ~ X at the last sequent <> 0 ~ X at 73 .

6) 6 ~ o at the last sequent & (0 ~ B2 at T, and C* ~ o at T3 ).

7) 7 # 6 at the last sequent.

8) 7 % A at the last sequent.

9) 7 ~ o at the last sequent & r~ o at Tz .
This means the last sequent in @ has the same connections as S . By the way, the grades
of two MIX’s occurring in @ are less than g. So by induction hypotheses, we can get the
required proof P’ .

If B' £ C? at T, we shall take Q as
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B\ T'— A,C?

(w—)
| |
p2—l Bs B9P - AaC

(c—)

© — A,B? B,T = A,C : Pa2
MIX
o, = AA,C CiLII— X
MIX
o, = AAL

some (—e),(—e)

o, - A\ Y,

and we can get P’ similarly.

Subcase 2-12: the last inferences of P; and P, are (—V) and (V—), i.e. P is of the

form
P Pia P Py
I' = A, B(a) B(t),I—- %X
(—V) V)
' = A,VzB(z) VzB(z),II1 - £
MIX
VI—AY.

Then by lemma 3.2, we can get a proof:
PP
' - A, B(t)
without a MIX . Then consider the following proof Q:
: P, : Pacy

T — A,B(t) B(t),l1— %
MIX

IL'I—-AX

The grade of this MIX is less than g, so by induction hypothesis, we can get the required
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proof P’ .

Subcase 2-13: the last inferences of P; and P, are (—3) and (3—). This case is similar

to subcase 2-12.

Case 3: r > 2.

Subcase 3-1: left-rank>1 and any mix occurrence of that MIX is not the principal

occurrence of the last inference of P, . We distinguish cases according to the form of P, .

Sub-subcase 3-1-1: the last inference of P; is (w—), i.e. P is of the form

Pl—l
(w—)
BT = A nN-x
MIX

B,T',IIg = Ap, X .
Then consider the following proof Q:
: Pict PPy

r-A Nn-x
MIX

F,Ho b 4 Ao,z

(w—)

B,F,Ho - Ao,z .
We can assign the same connections as S to the last sequent in @, and the rank of this
MIX is less than r (since the left-rank decreases). So by induction hypothesis, we can get

the required proof P’ .

Sub-subcase 3-1-2: the last inference of P, is (—w).
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Sub-subcase 3-1-3: the last inference of P is (c—).
Sub-subcase 3-1-4: the last inference of P, is (—c).
Sub-subcase 3-1-5: the last inference of P, is (e—).
Sub-subcase 3-1-6: the last inference of P, is (—e).
Sub-subcase 3-1-7: the last inference of P; is (A—1).
Sub-subcase 3-1-8: the last inference of P; is (A—2).

Sub-subcase 3-1-2 ~ 3-1-8 are similar to sub-subcase 3-1-1.

Sub-subcase 3-1-9: the last inference of P, is (—A), i.e. P is of the form

: Pra : P2
T—A,B © > A,C PP,
(—A)
MIX IO = A,A,BAC n-3

I,0,lly — Ao, Ay, BAC, X .

Then consider the following proof Q:

Pl-l : P> Pl_g Pg
r—-A,B N-x 0 - AC n-x
MIX MIX.
F,Ho—)Ao,B,E O,Ho—)Ao,C,E
some (—e) some (—ve)
LI — Ay, E, B 0,1, — A, 2,C

(=A)
F, Ho, @, no — Ao, E, Ao, 2, BAC

some (c—),(—c),(e—),(—e)

F, O,Ho — Ao, Ao,B/\C, Y.
The ranks of these two MIX’s in @ are less than r, and the last sequent in Q@ has the

same connections as § . So by induction hypothesis, we can get the required proof P’ .
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Sub-subcase 3-1-10: the last inference of P; is (V—). This case is similar to sub-

subcase 3-1-9.
Sub-subcase 3-1-11: the last inference of P, is (—V1).
Sub-subcase 3-1-12: the last inference of P; is (—V2).

Sub-subcase 3-1-11 and 3-1-12 are similar to sub-subcase 3-1-1.

Sub-subcase 3-1-13: the last inference of P, is (O—), i.e. P is of the form

: Pra P2
T — A, B! C?,0 - A : P,
(O—)
BOC,T,0 — A, A Moy
MIX

(BOC),T, 0, — Ag, Ao, T .

Then consider the following proof Q:

2P 2P,
' - AB! N-3
MIX
P, Ho — Ao, B,E 2 Pl—2 : Pg
some (—e) C*,0—= A I-3
MIX
F,Ho—)Ao,E,B C,@,Ho—)/\o,z
(5-)

BDC, F’ HOy ea I_IO - AO’ Ea AO: by

some (c—),(—c),(e—),(—e)

(BOC),T,06,I — Ag, Ao, T .
The ranks of these two MIX’s are less than r. Now, we check up the connections at the
last sequent in Q. The above three sequents (I' — A, B!), (C?,0 — A) and (Il — £) are
called 7; , 72 and T3 , respectively. For any formulas 4 in T, 8 in A, € in ©, Ao in Ao,
7o in [Ip and o in X, the following 1) ~ 12) hold in both P and Q:
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1) (BDC)® # & at the last sequent.

2) (BDC)® ~ )¢ at the last sequent & C? ~ Xg at 73 .

3) (BDC)® ~ ¢ at the last sequent & (C? ~ Af at T; and A? ~ o at T3 ) for some
mix occurrences A%, A7,

4) v ~ b at the last sequent & v~ § at 7; .

5) 4 ~ Ao at the last sequent & (y~ B! at 7; and C? ~ g at T3 ).

6) v ~ o at the last sequent <& ((y~ A*at Ty or (Y~ B' at 7, and C? ~ A7 at T, ))
and A* ~ o at 73 ) for some mix occurrences A*, A7, A

7) 0 # 6o at the last sequent.

8) 8 ~ ) at the last sequent & 0 ~ g at T .

9) 8 ~ o at the last sequent < (§ ~ A’ at T2 and A’ ~ o at T3 ) for some mix
occurrence A*, A,

10) mo % 6o at the last sequent.

11) mg 4 Ag at the last sequent.

12) o ~ o at the last sequent & 7o~ o at 73 .
This means the last sequent in @ has the same connections as § . So by induction hy-

pothesis, we can get the required proof P’ .

Sub-subcase 3-1-14: the last inference of P; is (—D+), ie. P is of the form

t P
B,T = A,C : Py
(—D+)
I'- A,BDC nI-Xx
MIX

F,Ho — Ao,BDC,Z .

Then consider the following proof Q:
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: Pl—l . Pz

B,T = A,C n-x
MIX

B,P,Ho hand Ao,C,E

some (—e)

B. T, Il = A, %,C .
At this last sequent, B! 2 ¢ for any formula ¢ in (Ag, X). Then we can get the following
proof:
: Q
[, — Ao, X,BDC

(=>+)

some (—e)

I',IIo — Ao, BDC, X .
The rank of this MIX in @ is less than r, and this last sequent has the same connections

as S . So we can get the required proof P’ by induction hypothesis.

Sub-subcase 3-1-15: the last inference of P, is (V—). This case is similar to sub-

subcase 3-1-1.

Sub-subcase 3-1-16: the last inference of P, is (—V), i.e. P is of the form

: Pia
I'—- A,B(a) : Pz
(=Y)
' = A,VzB(z) I-x
MIX

I 1lp — Ao, VzB(z), X .

Then using lemma 3.2, we can get the following proof:
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E {_1 . 'pz

I' = A, B(b) N-x
MIX
I‘» HO - AOa B(b)i pY
some (—e)
[, Iy — Ay, X, B(b)
(—=V)

I, IIs — Ao, X,VzB(z)

some (—e)

F, Ho — Ao,VzB(:c),Z
where b is a new free variable. The rank of this MIX is less than r, so by induction

hypothesis, we can get the required proof P’ .

Sub-subcase 3-1-17: the last inference of P; is (3—). This case is similar to sub-

subcase 3-1-16.

Sub-subcase 3-1-18: the last inference of P; is (—3). This case is similar to sub-

subcase 3-1-1.

Subcase 3-2: left-rank>1 and one of the mix occurrences of that MIX is the principal

occurrence of the last inference of P, . We distinguish cases according to the form of P, .

Sub-subcase 3-2-1: the last inference of P; is (—w), i.e. P is of the form

: Pro
r-A 2Py
(w—)
- AA N-X
MIX:
P,Ho—)Ao,z .
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Then consider the following proof Q:
P PP,

'-A n-x
MIX

[ — Ao, Z .
We call this last sequent S’ . Now, rank of this MIX is less than r, so by induction
hypothesis, we can get a proof of &’ without a MIX. But S’ may not have the same
connections as § . That is, for any formulas ¢ in (T',IIg) and 4 in (Ao, Z),
p~YatS' =>p~vatsS,
but the converse may not be true. Then we apply some (w—), (—w), (c—), (—c¢), (e—)

and (—e) to @ in order to add necessary connections, and we get the required proof P’ .

Sub-subcase 3-2-2: the last inference of P, is (—c¢). This case is similar to, or easier

than sub-subcase 3-2-1.

Sub-subcase 3-2-3: the last inference of P, is (—A), i.e. P is of the form

t P Y 2
(o) r-A,B O = AC PP,
—A)
IO — AA,BAC N-2
MIX

I[,0,Ilp = Ag, A,
where A = BAC. Then, by the same way as sub-subcase 3-1-9, we can get the following

proof without a MIX:

PsHO"'"AO,EaB O,HO_’AO’SaC
(—=A)

F, Ho, @, Ho — Ao, 2, Ao, 2, BAC .

Then by using this proof, we can get the following proof:
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F,Ho - Ao, 2,B @, Ho - Ao, E,C : Pz
(—A)

F, Ho, 6, Ho - Ao, 2,1\0,2,3/\0 Im-3%x
MIX

F, Ho, (-), Ho, no — Ao, 2, Ao, 2, P

some (¢c—), (—c), (e—),(—e)

I‘a 03 HO — AO’ A03 x.
Since the left-rank of this MIX is 1, the rank of this MIX is less than r. And this last
sequent has the same connections as S . So by induction hypothesis, we can get the

required proof P’ .

Sub-subcase 3-2-4: the last inference of P is (—V1).
Sub-subcase 3-2-5: the last inference of P; is (—V2).

Sub-subcase 3-2-4 and 3-2-5 are similar to, or easier than sub-subcase 3-2-1.

Sub-subcase 3-2-6: the last inference of P, is (—D+), i.e. P is of the form

B,I'—- A,C : Py
(+34)
' = A,BOC I—-3
MIX
LI — Ag, 2

where A = BDC. Then, by the same way as sub-subcase 3-1-14, we can get the following

proof without a MIX:

B, T\l — Ao, 2, C

(=2+)
F, Ho — Ao, 2, BDC .

Then by using this proof, we can get the following proof:
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B,I‘,Ho—)AO,E,C Epz

(=>+)
P,Ho—iAo,E,BDC H—)E

F, Ho, Ho — Ao, 2, 2

some (c—),(—c),(e—),(—e)

[ — Ag, Z .
Since the left-rank of this MIX is 1, the rank of this MIX is less than . And this last
sequent has the same connections as S . So by induction hypothesis, we can get the

required proof P’ .

Sub-subcase 3-2-7: the last inference of Py is (—V), i.e. P is of the form

: Praa
I' - A, B(a) 1 P,
(—=V)
I' - A,VzB(z) n-x
MIX
F, Ho — Ao, PN

where A = VzB(z). By the same way as sub-subcase 3-1-16, we can get the following

proof without a MIX:

F, Ho — Ao, E, B(b)
(=Y)

[ Ip — Ao, 8,VzB(zx) .

Then by using this proof, we can get the following proof:
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P, no - Ao, Z, B(b) Pz
(=V)

I, = Ao, E,VzB(z) NI-X
MIX

P, HO) HO - AOa Zs z

some (e—),(—c),(e—),(—¢)

[, — A, .
Since the left-rank of this MIX is 1, the rank of this MIX is less than r. And this last

sequent has the same connections as S . So by induction hypothesis, we can get the

required proof P’ .

Sub-subcase 3-2-8: the last inference of P, is (—3). This case is similar to, or easier

than sub-subcase 3-2-1.

Subcase 3-3: right-rank>1 and any mix occurrence of that MIX is not the principal

occurrence of the last inference of P, .

We only show the case: P is of the form

: Paoy
P B, II-%C
(=)
'r—-A I1-X,B>C

MIX
F, Ho — Ao, E, BDC .

We can get the following proof Q:
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1Py : P

r-A B,l1 - %,C
MIX:

F,B, Ho — Ao, Z,C

some (e—)

BLT,Ilp — Ao, Z,C .
At this last sequent, B! £ ¢ for any ¢ in (Ag, £). So we can get the following proof:
e,
I, Iy — Ao, E,BDC .

(=2+)

The rank of this MIX in @ is less than r, and this last sequent has the same connections

as S . So we can get the required proof P’ by induction hypothesis.

Other cases in subcase 3-3 are left to the reader.

Subcase 3-4: right-rank>1 and one of the mix occurrences of that MIX is the principal
occurrence of the last inference of P, .

We only show the case: P is of the form

5 P‘Z—l : P2~2
P, 0 — A, B! C% I — X
(>-)
- A B>C,0,T1 A, T

MIX

F) 90: HO - AO, Aa by

where A = BOC. Then consider the following proof Q:
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i P : Pa_z

- A Ctll- %
MIX
E pl : Pz_l P, C, Ho — Ao,E
'—-A O — A, B! some (e—)

MIX

EP] F,(“)o—'Ao,A,B C,F,HQ—PAQ,E
(5—)

-4 BDCaF’GmI"HO'_’AOaAsAO’E

MIX

P, F, eo, F, Ho - Ao, Ao, A, Ao, 2

some (c—),(—c),(e—),(—e)

[, 0, Iy — Ag, A E .

The ranks of these three MIX’s are less than r. Now, we check up the connections at
this last sequent. The above three sequents (I' — A), (0 — A, B') and (C%,II — £) are
called 7; , 7; and 73 , respectively. For any formulas v in T', §g in Ay, 0y in g, A in A,
7o in Ilp and o in I, the following 1) ~ 9) hold in both P and Q:

1) 4 ~ §p at the last sequent ¢ y ~ & at 77 .

2) 4 ~ A at the last sequent & (y ~ A at 7; and A’ ~ ) at 7 ) for some mix
occurrence A', A,

3) v ~ o at the last sequent & (y~ A* at 7y and (C* ~ o at Ty or A’ ~ g at Tz ))
for some mix occrrences A, A,

4) Gy # o at the last sequent.

5) 0o ~ A at the last sequent & Gp~ A at 7 .

6) 0o ~ o at the last sequent & (6 ~ B! at T, and C* ~ o at T3 ).

7) mo # & at the last sequent.

8) mo # A at the last sequent.

9) mp ~ o at the last sequent & T~ at 73 .

This means the last sequent of @ has the same connections as § . So by induction hy-
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potheses, we can get the required proof P’ .

Other cases in subcase 3-4 are left to the reader.

This completes the proof of lemma 3.4. O

Theorem 3.5 (cut-elimination theorem for ¢-LD) Suppose P is a proof of a se-
quent S in c-LD. Then from P, we can constiruct a proof P’ of S in c-LD which does not
contain CUT and MIX.

Proof CUT is a special form of MIX. So by lemma 3.4, we can eliminate all CUT’s in

P one after another. O
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4 Cut-elimination theorem for LD

In this section, we prove the converse of theorem 2.1 and a weak cut-elimination theorem

for LD.

Let Aj,...,A, be formulas and I' = A be a sequent. Then by V(A4,...,4;) and
A(Ai, ..., A,), we mean the formulas A;V...VA, and A;A...AA,, respectively. If n = 0, we
define V() = L and A() = LD.L. Moreover by {I'; A}, we mean the formula A(T')D V(A)
which represents the sequent I' — A.

Special sequents are defined inductively as follows:

1) Sequents
{T;A} = {A,T;A}

{T;A} — {I;4, 4}
{A,A,T;A} = {A, T; A}
{T;4,A,A} - {T; A, A}

{T',A,B,II; A} = {I', B, A,I; A}
{I';'A,A,B, 2} = {T;A,B,A, X}

{A,T;A} = {AAB,T; A}

(B,T; A} — {AAB,T; A}
{T;A,AIN{II; 2, B} — {T,II; A, X, AAB}
{A,T;AJA{B,II;£} — {AVB,T,II; A, T}

{I;4,A} - {T'; A, AVB}

{T; A, B} — {T;A, AVB}
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{T; A, A}A{B,I;£} - {ADB,T,1I; A, 5}
{A,T; B} - {I'; ADB}
{A(t),T;A} - {VzA(z),T; A}
Vz{T; A, A(z)} — {T; A, Vz A(z)}
Vz{A(z),T; A} = {3zA(c),T; A)
{T;4,A(t)} - {T;A,3zA(z)}
{[;A,{A,I;X}} = {T, 4;A,{I; Z}}

are all special sequents; 2

2) If A — B is a special sequent, then
{I;4,4} - {T; 4, B}

is a special sequent.

Sequent calculus LDS is defined as follows (“S” means “Special sequent”). The axioms
of LDS are the same as LD. The inference rules of LDS are the same as LD except CUT.
We adopt the following rules SP.CUT and SP.CUT?2 in place of CUT:

'—=AA A—-B
SP.CUT

'r-A,B

where A — B is a special sequent.

I' - AJ{A L £} {AI;Z},A—- {I;
SP.CUT2 }

IA— A{I;X}.
’In our notation, z does not occur in (I',A,A()) at Vz{T;A, A(z)} — {I'; A,¥zA(z)} and at

Vz{A(z),T; A} — {IzA(z),T; A}, by the definition of formulas in section 1.
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LDS is a subsystem of LD.
Sequent calculus LDS! is obtained from LDS by replacing SP.CUT and SP.CUT?2 by
the following rules:

'—-A,A
SP.CUT'

'-A,B

where A — B is a special sequent.

T = A {ALT)

SP.CUT?2"
[A— A{II; T} .

Lemma 4.1 Each special sequent is provable in LD without a CUT. A sequent
{A,T; A}, A—- {T;A}
is provable in LD without a CUT. (We can actually construct proofs of these.)
The proof of this lemma is not difficult, but needs a large space. So we omit this.

Theorem 4.2 LDS and LDS are equivalent, i.e. if P is a proof of S in LDS (LDS!),
then we can construct a proof of S in LDS! (LDS) from P .

Proof This is obvious by lemma 4.1. O

The following theorem and corollaries are the main results in this section.

Theorem 4.3 (converse of theorem 2.1) Suppose P is a proof of a sequent I' —» A
with some connections in c-LD. Then from P, we can construct a proof of ' — A (without

connections) in LDS (hence, in LD). If A = 1, we can also construct a proof of T' = in

LDS.
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Corollary 4.4 (cut-elimination theorem for LD) Suppose P is a proof of T — A in
LD. Then from P, we can construct a proof of T — A in LDS.

Corollary 4.5 The following five conditions are equivalent:
1. — A is provable in LD;
2. — A is provable in c-LD;
3. — A is provable in ¢-LD without a CUT;
4. — A is provable in LDS;

5. — A is provable in LDSI 3

The proofs of these corollaries are straightforward by proposition 1.1, theorem 2.1,

3.5, 4.2 and 4.3.

To prove theorem 4.3, we introduce a system c-LDS! which derives sequents with
connections. The axioms of c-LDS/ are the same as c-LD. The inference rules of c-LDS/
are the same as c-LD except that we adopt the following rules (—2), SP.CUT’ and
SP.CUT?' in place of (—>+) and CUT:

AT - B!

(—2)
' —» (ADB)?

where for any formula 4 in T,

74 ~ (ADB)? at the lower sequent & v ~ B! at the upper sequent.

3In [7], Ono independently proposes a cut-free formulation of CD which is similar to our LDSr.
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= A A
SP.CUT'

' — A,B?
where A — B is a special sequent, connections between I' and A are inherited, and for
any formula 4 in T,

v ~ B? at the lower sequent <> v ~ A! at the upper sequent.

I'— A {AIT)
SP.CUT?

T, A2 - A {IL; )2
where connections between I" and A are inherited, there is no connection between A? and
A at the lower sequent, A2 ~ {II; X}? at the lower sequent, and for any formulas v in T,

4 ~ {II; T} at the lower sequent & vy ~ {A,II; T} at the upper sequent.

Except for the difference of axioms, c-LDS/ is LDS/ simply with connections.

Now, if the following lemmas are proved, we can prove theorem 4.3 easily.

Lemma 4.6 The rule (—D+) is derivable in c-LDS!, i.e. if P is a proof of a sequent S
= (AL, = A, B? ) in c-LDS! and there is no connections between A! and A at S , then
from P, we can construct a proof of a sequent S’ = (T — A,(ADB)? ) in ¢-LDS! where
the connections between I' and A are inherited and for any formula « in T,

vy~ (ADBP atS' &y~ B?atS.

Lemma 4.7 IfP is a proof of ' — L in LDS, then from P, we can construct a proof of
I' - in LDS.

Proof of theorem 4.3 Let P be a proof of I' = A in ¢-LD. Then by theorem 3.5, we

can get a cut-free proof P’ of I' — A in ¢-LD.
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Now, let P’ be of the form:
1 Q
All-3,B

(—>+)
I1- % ADB

F'-A
where Q does not contain (—D+). Then Q is a proof in ¢-LDS/, since Q does not contain
CUT and (—D+). So by applying lemma 4.6 to Q, we can get the following proof:
P QY
I1—X,ADB

r-A
where Q' is a proof in ¢-LDS/. And by iteration of this “(—D+) elimination process”, we
can get a proof P” of I' = A in ¢-LDS/ in the end. Then, if we ignore the connections in
P”, this is a proof of I' = A in LDS/, and by theorem 4.2, we can get a proof of ' = A
in LDS.

When A = 1, we can also get a proof P” of I' = in LDS by lemma 4.7. O

Lemma 4.7 is easily shown by the following lemma.

Lemma 4.8 Suppose P is a proof of
['— Qg LAy, ..., LA, (n20)

in LDS. Then from P, we can construct a proof of
' =2 Ag, Ay, .., A,

in LDS.

Proof This lemma is proved by easy induction on the number of inference rules in P.
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We only notice that: at the inference

- AA A—B
SP.CUT

'-A,B ,
B # 1, and at the inference

- A,A AB—-C
SP.CUT2

T,B—AC ,
C£1. O

Lemma 4.6 can not be proved directly. We will prove a stronger statement in lemma 4.10
by induction.

For it we need the following lemma.

Lemma 4.9 Suppose P is a proof of a sequent S in c-LDS! and T is a (1,0)-permulalion
of S, whereS = (IT' = A ), T = (Ty;T'y = A ), and there is no connection between 'y
and A at T. Then from P, we can construct a proof P' in c-LDS! of (To — A ) with the

same connections between I'g and A as 7.

Proof This lemma is proved similarly to lemma 3.1. O

Lemma 4.10 SupposeP is a proof of a sequent S in ¢-LDS! and T is an (n,n)-permutation
(n 2 0) of S where:

oS =T=A

o7 =To;l;..3Tn = Ag; Ay .5 Ay,

o foranyi (1<i<n) and j (0<5<n), ifi # j then there is no connection between
[i and A; at T (we will call this condition as the connection condition).

Then from P, we can construct a proof P’ of a sequent &' in c-LDS! where :
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e §' =Ty — A, {Fl; Al}la crey {Fn; An}n:
o the connections between Ty and Ao at S’ are the same as those at T,
¢ for anyi (1<i<n) and any formula vy in Ty,

7o ~ {T;; A;}‘ at §' & v ~ &; for some formula §; in A; at T.

Proof We prove this lemma by induction on the number of inference rules in P. We

distinguish cases according to the form of P.

Case 1: P is of the form

Al - A% .

Subcase 1-1: A? is in Ag at 7. In this case, A! is in [y (since A! ~ A? and the
connection condition). So we can get P’ as follows:

A—- A

some (—w)

Ao ALY () -

Subcase 1-2: A% isin Ax(k > 0) and A! is in g at 7. Then we can get P’ as follows:

A—-A
(w—)
1D1,A—- A
(—=2)
A= (LD>l)DA

some (—w), (—e)

A- {54 000) ({;A} = (LD>L)2A).

Subcase 1-3: A? is in Ai(k > 0) and A! is not in Ty at 7. In this case, A! is in T

(since A! ~ A? and the connection condition). So we can get P’ as follows:
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A— A
(=D)

— ADA

some (—w), (—e)

= {ihos {44}, 0} ( {A;A} = ADA).

Case 2: P is of the form
L—-A.

This case is similar to case 1.

In the following cases, we assume that P is of the form

: Py
S
J
S
or
P : P2
S S2
J
S .
Case 3: J = (w—), i.e. P is of the form
: Py
mI—-A
(w—)
ALl - A .

Subcase 3-1: Al isin I'g at 7. Let
T = Al, Ho; Hl; eeey H,, b 4 Ag; Al; wesy An'
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SP.CUT

Then consider an (n,n)-permutation 7; of S, as:
T =1L .. I, = Ag; Ay AL
The connection condition holds for 7; . So by induction hypothesis, we can get the fol-
lowing proof:
: P
o — Ao, {II;; A1}, ..., {II4; A},
and we can get P’ as:

Py

(w—)

Aa HO - AO; {Hl; Al}) seey {Hn; An} .
At the inference (w—), we can assign arbitrary connections to the principal occurrence.

So we can assign the required connections to this last sequent.

Subcase 3-2: A! is in I'x(k > 0) at 7. By the same way as above, we can get a proof:
: P
Mo — Ag, {II1; Ay}, ..., {In; AL}
Then, we can get P’ as follows:

T DI
: P

some (—e)

Il — AOa {Hl; Al}'l eony {nn; An}’ {Hk; Ak}
HO - AO; {Hl; Al}s eevy {Hn; An}a {A, Hk; Ak}

some (—e)

o — Ag, {TIy; Ar}y .oy {A T Ak}, oo, {TTns A}

It is obvious that this last sequent has the required connections.

Case 4: J = (—w). This case is similar to case 3.
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Case 5: J = (e—), i.e. P is of the form
i P
II,A, B3,06 - A

(e=)

II,B?,Al,0—- A

Subcase 5-1: B? and A! are in Iy at 7. This case is similar to subcase 3-1.

Subcase 5-2: B? and A! are in I'y(k > 0) at 7. This case is similar to subcase 3-2.

Subcase 5-3: B®isin I';, A'isin T, and ¢ # j at 7. Then 7T is also an (n,n)-
permutation of §; satisfying the connection condition. So we can get the required proof

P’ by induction hypothesis.

Case 6: J = (—e). This case is similar to case 5.

Case 7: J = (c—).
Case 8: J = (—c¢).
Case 9: J = (A—1).
Case 10: J = (A—2).

Case 7 ~ 10 are similar to case 3.

Case 11: J = (—A), i.e. P is of the form
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L P, P,
SR WL n-x,B?

(—N)
0,1 — A, X, (AAB)® .

Subcase 11-1: (AAB)? isin Ap at 7. Let
T = 0g,1Ip; 04,1115 ...; 0, I, = Ag, Zo, (AAB)* A1, 545 .5 An, B
Then consider two (n,n)-permutations 7; of S; and 7; of S; as:
Ti = ©0; 01...; On = Ao, Al Ag; s An,y
T, = lp; ;.5 11, = Bo, B 54505 B,
The connection condition holds for 7; and for 7; . So by induction hypotheses, we can
get the following two proofs:
: P,
Qo — Ao, A, {O1; A1}, ..., {On; A},
and
iy 24
o = %o, B, {II;; £ }, ..., {IIn; Z,} .

Then we can get P’ as:

: Py i Py
some (—e) some (—e)
90 - AO: {@l; Al}, o0ty {en; An}a A HO - 20: {Hl; Z:l}s 3 {Hn; 211}7 B

(—=A)

60’ HO — AO) {91; Al}'; eeey {en; An}1 207 {Hl; 21}: seey {Hn; En}’ AAB

some (—ve¢), SP.CUT', (—¢)

60, Ho - Ao, 20, A/\B, {61, Hl; Al, 21}, veey {0,,, Pin; An, En}

It is easy to show that this last sequent has the required connections.
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Subcase 11-2: (AAB)? is in A(k > 0) at 7. Let
T = O, Ip; 04,114;...;0,, IT,, = Ag, Zo; Ay, By -e; Axy, Sk, (AAB)3; 5 AL B,
Then consider two (n,n)-permutations 7; of S; and 73 of S; as:
Ty = 0;015..;0n = Ag; Ars s Ap, ALy Ay,
T =gy, = Zg; 245 .. 2k, B .. B
The connection condition holds for 7; and for 7; . So by induction hypotheses, we can
get the following two proofs:
: Py
B0 — Ao, {O1; A1}, ..., {Ok; Ak, A}, oy {On; An}
and
2P
o — To, {II1; 1}, ...y {ILk; B, B}y ooy {IIn; Z0 }
Then we can get P’ as:

Pl : Py

some (—e) some (—e)
(-*A\@o—’Am{@l;lh}, s {OniAn} {0k, A} Tlo—Zo, {TIi;E0}, oo {lln; Bn } {2, B)
9}0, o = Aoy {O15 A1}, s {Onj An}, Bo, {Ili; B}y ooy {Tln; B}, {O; A, AAA{ILy; E, B}
some (—e), SP.CUT, (—¢)

eo, Ho hand Ao, 20, {91, Hl; Al, 21}, cery {Ok, Hk; Ak, Ek, A/\B}, ceny {@n, Hn; An, Zn} .

It is easy to show that this last sequent has the required connections.

Case 12: J = (V—). This case is similar to case 11.

Case 13: J = (—MV1).
Case 14: J = (—W2).
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Case 13 and 14 are similar to case 3.

Case 15: J = (D—), i.e. P is of the form
: Py : P,
0 — A, Al B’lI—%

(5-)
(ADB)%,0,l1 » A, .

Subcase 15-1: (ADB)? is in I'g at 7. Let
T = (ADB)a, @o, Ho; 91, Hl; ooy G,., Hn - Ao, Eo; A], 21; ey An, En.

Sub-subcase 15-1-1: 8, £ A?! for any formula 8, in ©y,...,0, at S; . Then consider
two (n,n)-permutations 7; of §; and 7; of S, as:
Ti = 00;04;...;0, — Ag, AL Aq; .5 AL,
T, = B2, 1o M5 .. I1, — 20; 54503 S
The connection condition holds for 7; and for 7; . So by induction hypotheses, we can
get the following two proofs:
: Py
G0 — Ao, A, {O1; A1}, {On; As}
where for any formulas 0, in ©g, Ag in Ag and for any ¢ (1 <7 < n),
1) g ~ Ao at this last sequent < 85 ~ A at Sy ,
2) Oy ~ A at this last sequent <& 6y ~ A! at S ,
3) 8 ~ {O;; A;} at this last sequent & 8y ~ A; for some formula J; in A; at Sy ,
and
: Py
B, Tlp — o, {Il;Z1}, ..., {TLa; Za}
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where for any formulas 7o in Iy, 0g in Xg and for any ¢ (1 < ¢ < n),
1) B ~ gy at this last sequent & B? ~ gg at S, ,
2) B ~ {II;; £;} at this last sequent <& B? ~ ¢; for some formula o; in &; at S, ,
3) mo ~ 0p at this last sequent & 19 ~ g at S, ,
4) mo ~ {II;; X;} at this last sequent < 7 ~ 0; for some formula o; in T; at S, .

So by using these proofs, we can get a proof:

P
some (—e) 1P,
00 — AOa {Gla Al}v cery {en; An}’ A Bs HO - 20, {Hl; El}s seey {Hm Zﬂ}

(5=)

ADB, eOa I-IO — AOa {ela Al}, ooy {em An}a 20, {Hl; 21},---, {Hn; En}

some (—e), SP.CUT', (—¢)

ADB,00,IIp — Ao, Xo, {O1,1; A1, 21}, ..., {On, s Ay, 2}

where for any formulas 0p in ©q, 7o in Ilp, Ao in Ag, g9 in ¥y and for any ¢ (1 <7 < n),

1) ADB +# )¢ at this last sequent,

2) ADB ~ gy at this last sequent & B% ~ g9 at S, ,

3) ADB ~ {0,,11;; A;, Z;} at this last sequent «» B? ~ o; for some formula o; in I;
at S, ,

4) 89 ~ Ao at this last sequent & Oy ~ Xp at S; ,

5) 0o ~ oo at this last sequent & (0 ~ A! at S and B? ~ 0 at S; ),

6) 0o ~ {O;,IL;; A;, X;} at this last sequent & (8 ~ A; for some formula A; in A; at
Sy or (6o ~ A! at S; and B? ~ g; for some formula g; in Z; at S, )),

T) mo % Ao at this last sequent,

8) 7o ~ gp at this last sequent & 7wy ~ gg at Sy ,

9) mo ~ {0;,I1;; A;, Z;} at this last sequent & 7 ~ o; for some formula o; in I; at S,.

This is the required proof P’ .
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Sub-subcase 15-1-2: 0, ~ A! for some formula 0, in @,(k > 0) at S; and B? # ¢ for
any formula o in ¥ at S; . Then consider an (n,n)-permutation 7; of S, as:
T, = B2, 1l; 115 ... I, — Zg; 5450003 20
The connection condition holds for 7; . So by induction hypothesis, we can get the fol-
lowing proof:
2Py
B,y — o, {[1;; 51}, .., {In; Za}
where B has no connection at this last sequent. So, by lemma 4.9, we can get the following
proof:
: Py
o — Zo, {1; Z1}, ..., {Iln; Ea},y
and by applying some (w—), (—w), (e—), (—e) and SP.CUT' to this, we can get the

required P’ as:

ADB, GOa 1-IO - AO’ 20’ {ela Hl; Als Z:l}a eoey {On’ Hn; Aru En} .

We can assign the required cannections to this last sequent.

Sub-subcase 15-1-3: 0, ~ A! for some formula ; in O;(k > 0) at S; and B? ~ ¢ for
some formula ¢ in ¥ at S; . Then consider two (n,n)-permutations 7; of S; and 73 of S
as:

Ti = 09;01;...;0, = Ag; Ay . Ag, AL L A,

T =To; 1 ..; B2 ;s = 203 24505 25,

Then the connection condition holds for 7; and for 7; . So by induction hypotheses, we

can get the following two proofs:
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SP.CUT?

Y
o — Ao, {O15 A1}, .y {Ok; Ak, A} .., {On; An)
where for any formulas 05 in ©g, Ag in Ag and for any ¢ (1 < i < n, i # k),
1) 6o ~ Ao at this last sequent & 6y ~ Ao at S ,
2) 8y ~ {O;; A;} at this last sequent & 6y ~ ); for some formula ); in A; at S
3) 6y ~ {O; Ak, A} at this last sequent & (6p ~ Ay for some formula ); in Ay at S
or Oy ~ A at S; ),
and
: P,
Mo — o, {IT1; £1}, .0y { B, Wi 2}y ooy {3 20}
where for any formulas mp in Ilg, 0o in Yo and for any ¢ (1 < ¢ < n,i # k),
1) mg ~ 0o at this last sequent < mo ~ g at S
2) mo ~ {II;; £;} at this last sequent & 7y ~ o; for some formula o; in &; at S,
3) mo ~ {B,IIx; Zx} at this last sequent & mp ~ oy for some formula oy in I at Ss.
So by using these proofs, we can get the following proof:

Py : Py

some (—e) some (—ve)

OO"’AO,{OI;AI }a ---’{en;An} ,{ek;Ak,A} HO'—’EO,{HI ;21 }) "-){Hn;zn}’{BaHk;Ek}

(—=nA)
001 HO — AO) {61; Al}a sery {On; An}, EOa {Hl; 2l}) ceey {Hn’ Z:ﬂ}, {Gk; ALW A}A{Ba Hk) Ek}

some (—e), SP.CUT’, (—c¢)

@01 HO - A07 EOs {013 Hl; Al') 21}1 ooy {@m Hn; An, En}7 {ADB: Oka Hk; Aka Ek}

60, HO, ADB - AO: 209 {elanl; Ala E1}1 sosy {ena Hn; An) En}, {ek) Hk; Ak: Ek}

some (e—), (—e)

ADB, 909 H0 - Ao, EO) {elvnl; Ah El}a aeey {en, Hn; Am z:n]‘

where for any formulas §; in ©g, 7 in Ilp, Ag in Ao, 0¢ in Eg and for any 7 (1 < 7 < n,
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i £ k),

1) ADB +# Aq at this last sequent,

2) ADB 4 o9 at this last sequent,

3) ADB # {0;,11;; A;, £;} at this last sequent,

4) ADB ~ {0y, 1I;; A, Z,} at this last sequent,

5) 0o ~ Ao at this last sequent & 8y ~ Ag at Sy,

6) 0y + og at this last sequent,

7) 0o ~ {O;,I1;; A;, Z;} at this last sequent & 8y ~ ); for some formula J; in A; at S,

8) 8o ~ {Op, I1x; Ax, Xk} at this last sequent & (6p ~ A for some formula A in Ay at
Syorfy~ Alat S, ),

9) mo % Ao at this last sequent,

10) mp ~ 0¢ at this last sequent & my ~ g at S,

11) mp ~ {0;,II;; A;, £;} at this last sequent & 7y ~ o; for some formula o; in Z; at
Sz,

12) wo ~ {Ok, IIx; Ak, Ex} at this last sequent & 79 ~ oy for some formula oy in Ty
at S, .

This is the required proof P’ .

Subcase 15-2: (ADB)? is in T'y(k > 0) at 7.

Sub-subcase 15-2-1: B? ¢ o for any formula o in ¥ at S; . This case is similar to 15-1-2.

Sub-subcase 15-2-2: B? ~ ¢ for some formula ¢ in £ at S; . This case is similar to

15-1-3.
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Case 16: J = (—D), i.e. P is of the form
: P
AT — B?

(—2)
I' - (ADB)® .

Subcase 16-1: (ADB)® is in Ag at 7. Let

T =Ty;Ty;..;T = (ADB)3;5...; .
Then consider an (n+1,n+1)-permutation 7; of S, as:

Ty =To;Th; i Tus A =555 B2
The connection condition holds for 7; . So by induction hypothesis, we can get the
following proof:

: Py
To — {T1; }-y {Tni }, {4; B}

where for any formula 4 in Iy and any ¢ (1 < ¢ < n),

1) 40 # {T';; } at this last sequent,

2) v0 ~ {A; B} at this last sequent <> 7o ~ B% at S; .
Then we can get the required proof P’ as:

L P

some (—e)

F'o— ADB,{T1;}, s {Tns } ({A; B} = ADB).

Subcase 16-2: (ADB)? is in Ai(k > 0) at 7. Let
T =To;T1;..;Tn =55 ...;(ADB)?; .5,
Then consider an (n,n)-permutation 7; of S; as:

=Ta:Te: A T - Y L
Ty =To;Ty5. AL T oo T =55 000 B
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The connection condition holds for 7; . So by induction hypothesis, we can get the
following proof.
: Py
Lo — {Fl; e {A, Ly B}”"’{Pn;}

where for any formula 74 in Iy and any i (1 £ i < n, ¢ # k),

1) v0 # {T;; } at this last sequent,

2) 70 ~ {A,T'x; B} at this last sequent < 7o ~ B at &, .
So we can get the required proof P’ as:

Py

some (—e), SP.CUT’

To = {T1; }y s {Tki ADB}, ooy {Ti } -

Case 17: J = (V=).
Case 18: J = (V).
Case 19: J = (3-).
Case 20: J = (—3).
Case 21: J = SP.CUT".

Case 17 ~ 21 are similar to case 3.

Case 22: ] = SP.CUT?, i.e. P is of the form
P

SP.CUT?’ Mo, {4,6iA)

I, A - %, {©;A)° .

Subcase 22-1: {©; A}’ isin Ag at 7. In this case, A? is in Tp at T (since A% ~ {©;A}°
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and the connection condition for 7). So

T = My, A% 1,55 I, — o, {054} 54503 B
Then consider an (n,n)-permutation 7; of S, as:

Ty = Mo; Thy; i T — o, {4,054} 5455 By
The connection condition holds for 7; . So by induction hypothesis, we can get the fol-
lowing proof:

: P
Mo = Zo, {A,0; A}, {15 241}, .., {5 Za }

and we can get the requirted proof P’ as:

: P

some (—ve)

SP.CUT? o — Zo, {I3; Z1}, -, {Iln; a}, {4, ©; A}

[Ig, A — Xy, {Hl; E31}, ceny {Hn; En}a {0; A}

some (—e)

HO’ A— 20a {Gs A}, {Hl; 21}""’ {Hn; z;n} .

It is easy to show that this last sequent has the required connections.

Subcase 22-2: {©; A}® is in Ag(k > 0) and A% isin Ty at 7. Let

T = Mo; Iy .. My, A% TT, = ;B0 B, {05 A3 2,
Then consider an (n,n)-permutation 77 of S; as:

T = Ho; Ty .. I, = Bo; Tij .oy By {4, A3 S,
The connection condition holds for 7; . So by induction hypothesis, we can get the fol-
lowing proof:

: Py
o — o, {ly; £1}, .., {Tes B, {4, 05 A}, .., {T1n; B4}
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and we can get the requirted proof P’ as:

M /
: Py

some (—e)

Ilo — o, {Hl; 2l}s eey {Hn; Z:n}a {Hk; iy {Aa 0; A}}
HO — EO, {Hl; 21}: seay {Hn; zn}a {nln A; zk, {@; A}}

SP.CUT"

some (—e)

I-IO - ZOa {Hl; 21}) seey {Hln A; Ek’ {0) A}}, sony {Hm 2n} .

It is easy to show that this last sequent has the required connections.

Subcase 22-3: {O;A)}° is in Ag(k > 0) and A isin T;(I # k) at 7. In this case | = 0
(since A? ~ {O©;A}® and the connection condition). Let

T = o, A% Th; .5 1, — Zo; T4; .03 Bk, {O; A3 .5 B
Then consider an (n,n)-permutation 7; of S, as:

T = o ;. T — B3 2455 Tk, {4, 05 A} .5 B
The connection condition holds for 7; . So by induction hypothesis, we can get the fol-
lowing proof:

: P
o — o, {Iy; L1}, ..., {Tk; B, {4, 0; A}}, ..., {IIn; 20}

and we can get the requirted proof P’ as:
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)

some (—e)

I-IO — 201 {Hl; El}, seey {Hn; 2n}a {Hk; Eka {Aa 0; A}}

SP.CUT'
Ilo — o, {Hl; 21}, ooy {Hn; 2n}a {Hka A; Ty, {@1 A}}

some SP.CUT'

SP.CUT?2" o — Zo, {Ih; Z1}y ooy {Tn; Tn}s { A, T i, {©;A}}

HO: A - E07 {Hl; Z“1}, eery {nn; Eﬂ}’ {Hk; zk’ {O; A}}

some (—e)

HOa A — 20; {Hl; E1}’ aeey {Hk; Eka {0, A}}a sery {Hm 27;} .

[t is easy to show that this last sequent has the required connections.

This completes the proof of lemma 4.10. DO

Proof of lemma 4.6 Lemma 4.6 is a special case of lemma 4.10. O
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5 Applications of cut-elimination theorems

In this section, we show some applications of our cut-elimination theorems.

First, we prove the following theorem.

Theorem 5.1 If a formula A is a theorem of CD and A has no occurrence of V” in

negative, then A is a theorem of intuitionistic logic.

In [2], Gabbay shows that: if A is a theorem of CD and A has no occurrence of “v”,
then A is a theorem of intuitionistic logic. Qur theorem refines this result.

To prove theorem 5.1, we show the following lemma.

Lemma 5.2 Suppose P is a proof of a sequent S =T — A (with connections) in ¢-LD,
and P does not contain (V—). Then from P, we can construct a proof P’ of a sequent
§' =To — A (without connection) in LJI (or LJ) where (To;Ty — AY; A, ) is a (1,1)-
permutation of S such that

vyisinTg & 4~ Al

for any formula v in T.

Proof This lemma is proved by induction on the number of inference rules in P. We

only show the following three cases.

Case 1: P is of the form
P 2 P,
© - A, B! C}ll—-2X

(>—)
(B>C)?, 0,1 = A, T .
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We call the above two upper sequents (@ — A, B!) and (C% 11 — £) by S; and S, , re-

spectively. Now, by induction hypotheses, one of the following subcases holds.

Subcase 1-1: we can get a proof:
: Py
Qo A
in L3/ where (0; ©; — A% A,, B!) is a (1,1)-permutation of S; such that
0isin O & 0 ~ A°

for any formula 8 in ©. In this case, P; is the required proof P’ .

Subcase 1-2: we can get a proof:
i P;
o — A
in LJ1 where (IIp; C?,II; — A% £,) is a (1,1)-permutation of S; such that
s in Ty & ¢ ~ A°

for any formula ¢ in (C?,1I). In this case, P} is the required proof P’ .

Subcase 1-3: we can get a proof:
Y
O — B
in LJ/ where (©9;0; — B!; A) is a (1,1)-permutation of S; such that
fisin Oy & 0 ~ B!
for any formula 8 in ©, and we can get a proof:
: P
Cllp— A
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in LI/ where (C?,IIp; I, — A% ;) is a (1,1)-permutation of S; such that
$isin (C* 1) & ¢~ A°
for any formula ¢ in (C?,II). Then we can get the required proof P’ as:
: Py Py
©y— B C,llp—= A

(0—)
BDC, O, Ilp — A.

Case 2: P is of the form
P
B\ T'- %,C?

(+34)
= Z,(B>C).

We call this upper sequent &; . Now, by induction hypothesis, one of the following sub-

cases holds.

Subcase 2-1: we can get a proof:
2Py
lp— A
in L)/, where (To; B',T'y — A% X,,C?) is a (1,1)-permutation of S; such that
$isin o & ¢ ~ A°
for any formula ¢ in (B!,T). Notice that B! £ A°. In this case, P} is the required proof

P
Subcase 2-2: we can get a proof:
: pr

Fo—’C
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in LJ/, where (T'o; B',T'; — C?;£) is a (1,1)-permutation of S; such that
$isin Ty & ¢ ~ C?

for any formula ¢ in (B!,T). Then we can get the required P’ as:

P}
Fo - C
(w—)
B, Fo - C
(—D)
Fo b 4 BDC .

Subcase 2-3: we can get a proof:
: Py
B,To—C
in L)/, where (B,Ty;T'; — C% ) is a (1,1)-permutation of &; such that
$is in (B, Tp) & ¢ ~ C?
for any formula ¢ in (B',T'). Then we can get the required P’ as:
: Py
B,Ty—=C

(=D}
Fo — BO(C.

Case 3: P is of the form
1P
' — X, B(a)!

(=Y)

I - Z,VzB(z)?
We call this upper sequent S; . Now, by induction hypothesis, one of the following sub-

cases holds.
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Subcase 3-1: we can get a proof:
1Py
Fo— A
in LJ1, where (T'g; Ty = A% £, B(a)?) is a (1,1)-permutation of S; such that
visin Ty & 7~ A°

for any formula 4 in T. In this case, P; is the required proof P’ .

Subcase 3-2: we can get a proof:
1 Py
I'o — B(a)
in LJs, where (To; 'y — B(a)'; Z) is a (1,1)-permutation of S; such that
v isin Iy & v ~ B(a)?
for any formula 4 in I'. Then we can get the required P’ as:
P Py
I'o — B(a)

(— VLJ)
o — VzB(z) . m}

Proof of theorem 5.1 By corollary 4.5, if A is a theorem of CD, there is a cut-free
proof P of — A in ¢-LD. Then, since A has no negative “v”, P contains no (V—). So
by the previous lemma, we can get a proof of — A in LJ/. This means A is a theorem of

intuitionistic logic. O

Next, we show disjunction property and existence property for CD.

Lemma 5.3 Let P be a proof of

— A1 g oery An
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in LDS. Then from P, we can construct a proof P’ of
— A
in LDS for some k (1<k<n), where

r=BorC if A, = BVC,
% = D(t) for some termt if Ay = 3zD(z),
Al = A otherwise.
Proof This lemma is proved by easy induction on the number of inference rules in P.

We only notice that: since P is a proof of — I, P is not an axiom, and the last infer-

ence of P is (—w), (—¢), (—e€), (—mA), (=), (=V2), (—=D), (—V), (—=3I) or SP.CUT. O

Theorem 5.4 (disjunction and existence properties for CD) If a formula AVB is
a theorem of CD, then either A or B is a theorem of CD. If a formula 3z A(z) is a theorem

of CD, then A(t) is a theorem of CD for some term t.

Proof This is straightforward by corollary 4.5 and lemma 5.3. O

We can prove the disjunction and existence properties more easily by a model theoretic
argument. But our method has an advantage of constructiveness, i.e. we can effectively

construct proofs of A or B, and of A(t).

Lastly, we mention the interpolation property. The problem whether Craig’s interpo-
lation theorem holds for CD or not is open ([9]). In case of classical, intuitionistic and
some other logics, interpolation theorem can be proved by using cut-elimination theorem.
So we hope that our cut-elimination theorems lead to interpolation theorem for CD. But

it does not come true yet.
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