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Abstract

We present a new proof of the standardization theorem for A\@n-calculus,
which is performed by inductions based on an inductive definition of 37-
reducibility with a standard sequence.

1 Introduction

The standardization theorem is a fundamental theorem in reduction theory of \-
calculus, which states that if a A-term M [-(or n-)reduces to a A-term N, then
there is a “standard” [-(or Sn-)reduction sequence from M to N. In [3], the author
gave a simple proof of the theorem for -reduction. This paper extends the result
to fn-reduction: we give a simple proof of the (weak) standardization theorem for
[Bn-reduction.

There have been some proofs of the standardization theorem in literature (e.g.,
[1,2,4,5,6,7]). Compared with these, a feature of the presented proof is that we use
an inductive definition (formal theory) of Gn-reducibility with a standard sequence.
In virtue of this definition, all the proof can be performed by easy inductions.

Applications of this method to proofs of other theorems (e.g., the leftmost re-
duction theorem for fn-reduction) and other calculi (e.g., term rewriting systems)
are future studies.

2 Preliminaries

A-terms are constructed by “application” and “abstraction” from variables (A-terms
of the form (MN) and (Az.M) are called an application and an abstraction respec-
tively). Capital letters A, B, ... denote arbitrary A-terms, and small letters z, vy, . ..
denote arbitrary variables. M[z := N| denotes the result of substituting N for all
the free occurrences of x in M with adequate renaming of bound variables. The set



of free variables in M is written by FV(M). We identify A-terms that are mutually
obtained by renaming of bound variables. In successive abstractions or applica-
tions, parentheses are omitted as follows: for example, Azyz. A = \x.(\y.(Az.A)),
and ABCD = ((AB)C)D. (See, e.g., [1] for the basic notion and terminology.)

The binary relation —g, (one-step [1-reducibility) on the set of A-terms are
defined as usual:

(+ (A A)B) ) =y (o (Afe = B])--+) and
(- (Az.(C)) ) —py (--C---)
where z & FV(C). The subterms (Az.A)B and Az.(Cx) are called fn-redezes where
the former and the latter are also called a (3-redex and an n-redex respectively. Let
R be an occurrence of a fn-redex in a A-term M. We write M iﬁn N if and only
if N is obtained from M by contracting the redex R. The relation —>f3,] (one-step

leftmost Sn-reducibility) is defined as usual: M —>én N if and only if M ign N for
the leftmost Bn-redex R in M, where a redex occurrence R; in M is said to be to
the left of another redex occurence R, in M if they occur as follows.

M=(+Ri--Ry-) or M=(-(-Rye--)e")

Ry

The binary relations — g, and —»f} are the reflexive transitive closures of — g3, and

"
—>én respectively.

Suppose that M iﬁn N and that P and @) are subterm occurrences of M and
N respectively. We write P ~» Q if @) is a one step residual of P. For example, if
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WhereR:()\xA)B#Pg andPg,#x, thenP1 Wpl, PQWQQ, P3WP3[£L' ::B],
Py ~ “each copy of Py in Az := B]”, and Ps ~» Ps. (Note that the redex (Az.A)B
has no residual.) Suppose that

(X o) gy gy (Y ),
We say that Y is a residual of X if
X~ Zi~s oo 2~ Y

for some Zy,...,Z, (n > 0). A fn-reduction sequence

R R Rnfl
My =5y My —Sp, -+ ——p, M,

is called weakly standard if the following condition is satisfied.
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Vi [ R;y1 is not a residual of a #n-redex occurrence P in M; such that P
is to the left of R;]

Moreover, the sequence is called strongly standard if the following condition is sat-
isfied.

Vi,Vj > i [ R; is not a residual of a n-redex occurrence P in M; such
that P is to the left of R;]

(The distinction between “weak” and “strong” appeared in [2]. Note that these two
conditions are equivalent if n-reduction does not exist.) For example, the sequence

(yz)
Az (Ty(L)) 25, Az (y(1n)) Dog, A (yz) 2225,
is weakly and strongly standard; the sequence

Az.(Iyz)
Ao (Ty (L)) 2, Ar.(Tyw) =25, Ty g,

is not strongly standard but weakly standard; and the sequence

Iy z.(yz)
Ao (Tyz) gy A (ye) “ g y

is neither strongly nor weakly standard, where I = \z.z.
In this paper, we present a simple proof of the theorem:

Theorem 2.1 (Weak Standardization Theorem) If M —g, N, then there is a
weakly standard Bn-reduction sequence from M to N.

Other important theorems, which have been proved in the literature (e.g., [4, 6]),
are there:

(Strong Standardization Theorem) If M —»g, N, then there is a
strongly standard (n-reduction sequence from M to N.

(Leftmost Reduction Theorem) If M —3, N and N is a fn-normal
form, then M —§ N.

We will discuss them in Section 4.

3 Proof

We define a “formal theory” which proves “formulas” of the forms A =,,, B and
A=y B.

Axioms

(Id) A = hap A.
(8) (Ax.A)BCYy---Cp, =hap Alx:=B]C; - - - C,,, where n > 0.
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Rules
A = hap B B = hap C

A =y C (Tr)

L = hap T

= (Var)

L =ppAB A=4C B=4xD A
L=yx<CD (App)

L =ypp Me.A A=4 B
L st \x.B

(Abs)

L =pap M. A A= Bx
L=4<B

x ¢ FV(B) and B is not an abstraction.

(n) with the proviso:

We write A —,,p B (or A —4 B) if and only if the formula A =,,, B (or A = B,
respectively) is provable in this system. (“hap” and “st” stand for “head reduction
in application” and “standard”.)

Theorem 3.1 If M —»y,, N, then M —»gn N. If M —4 N, then there is a weakly
standard Bn-reduction sequence from M to N.

Proof By induction on the proof of M =,, N or M = N. Here we show the
only nontrivial case: The proof is

M =pap Ao A A=y Nz
M=y N ()

where x ¢ FV(IN) and N is not an abstraction. By the induction hypotheses,
there are a leftmost reduction sequence £ from M to Ax.A, and a weakly standard
reduction sequence S from A to Nx. We will show that there is a weakly standard
reduction sequence ST from Az.A to N; then the concatenation of £ and S* is the
required standard sequence from M to N. We will explain, based on an example,
the definition of the sequence S*. If a A\-term P is of the form P’z and = ¢ FV(P'),
then we say that P is an n-body for x. Suppose that the weakly standard reduction
sequence S is

where

e Bz, (A\y.(Cy))x, Cx, and Nz are n-bodies for x;
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e A’ is not an n-body for z;
e B ﬁ)ﬁn Ay.(Cy); and

o CignN.

Note that R3 = Bj; otherwise, reduction of R cannot make \y.(Cy) if B is an
application, and S is not weakly standard if B is an abstraction. Then, the weakly
standard sequence ST is defined as follows.

Az A ﬂ%n \p A &’ﬂn Az.(Bz) Mﬁn B ﬁ)m] Ay.(Cy) Mﬁn C iﬂn N.

Lemma 3.2 (1) If M =y, N, then MP —y,, NP.
(2) If L —ypap M —4 N, then L —4 N.
(3) If M —yap N, then M|z := P| —p,, N[z := PJ.

Proof (1) By induction on the proof of M =, N. (2) If M = N is proved, then
there must be a premise M =p,, P for certain P. From this and the assumption
L —pap M, we can infer L =,,, P by the rule (Tr). Then L = N is proved by the

rule that infers M =4 N. (3) By induction on the proof of M =, N.

Lemma 3.3 If M —4 N and P —4 y, then M|z := P| -4 N[z :=y].

Proof By induction on the proof of M =4 N. We divide cases according to the
last inference of the proof. The substitution [z := P] and [z := y| will be represented

by [P] and [y] for short.
(Case 1): The last inference is

T
M:>hapx

= (Var)

where N = x # z. In this case, we have

. m and Lemma 3.2(3)
M[P] —hap T
MP] 5 2. L 0)

(Case 2): The last inference is

T
M#hapz
M:>StZ

(Var)
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where N = z. In this case, we have

. 7 and Lemma 3.2(3) . assumption of the lemma
M[P] =y P P=yuy
M[P] =t Y-

Lemma 3.2(2)

(Case 3): The last inference is

ST e ST

M =yp AB A=y, C B=4D A
M =4 CD (App)

where N = CD. In this case, we have
. 7 and Lem.3.2(3) : 1h. for o : ih. for 7

M[P] =nap (AB)[P] AP =« Clyl B[Pl =« Dly] (App)

M[P] = (CD)[yl.

(Case 4): The last inference is

s e

M =pap A\t A A=y B
M = Av.B (Abs)
where N = A\z.B. If x # z, then we have
. 7 and Lem.3.2(3) : ih. for o
M[P] :>hap ()\.’L'A) [P} A[P] st B[y] (AbS)
M[P] =« (\x.B)[y]
where we assume that © ¢ FV(P,y) (otherwise we rename z). If 2 = 2, then

(Ax.X)[z:=Z] = Az.X, and the induction hypothesis is not necessary.
(Case 5): The last inference is

s SO

M :h;p M. A A=y Nz
Moo N (n)

where © € FV(V) and N is not an abstraction. If x # z, then we have

: 7 and Lem.3.2(3) : 1h. for o
M[P] = hap (M. A)[P] AlP] = (Nz)ly] ()
M[P = Ny !

where we assume that x ¢ FV(P,y) (otherwise we rename x). Note that (Nx)[y] =
(N[y])z and the proviso for Ny] is satisfied. If = z, then the induction hypothesis
is not necessary.



Lemma 3.4 If L -y (Axy -+ @ M)ys - - Yy Py - - - Fy, then L -y Mz:=yy, ...,
T = Ym|F1 -+ Fy, where m > 1, n > 0 and x1,...,x,, are distinct. (Note that
[T1:=y1,...,Tm =Yn] is a simultaneous substitution, and this will be represented

by [¢] for short.)

Proof By induction on the proof of L =g (Axy- 2. M)ys -y Fy - F,. We
divide cases according to the last inference of the proof.
(Case 1): n =0, and the proof is

T Lo T
L :>hap AB A :>st (Axl e me)yl T Ym—1 B :>st Ym
L=y Aty 2y M)y; - Y.

(App)

If m > 2, then by the induction hypothesis for o, there is a proof

c o

A =y Az M)[y]

where [gj’] = [r1:=vy1,. ., Tm-1:=Ym—1]. If m = 1, then we define 0’ = 0. In any
case, the proof ¢’ must be of the form

X L
A =>hap Aoy, . C C =g M [y’] (Abs)
A =y Az (M[Y)).

(Note that ,, & {y1,- .., Ym—_1}; otherwise we rename x,,.) Then we have

: (1) - (1)

L =yap Clrp:=B] Clxy,:=B] =« M[Y]
L =4 My

Lem. 3.2(2)

where (1) is

X
: A =pap AT, C i
o hap Alm (axiom f3)
L= AB AB Sy O 018 2320 0 VB Sy Clom = B
L =ap Clxy, :=B]

(Tr)x2

and (1) is obtained by v, 7 and Lemma 3.3.
(Case 2): n > 1, and the proof is

L - -
L:>hap AB A:>St ()\'Tl'..xm'M)yl..'ymFl."anl B:>St Fn
List ()\lj"'fL‘m.M)yl---ymFl...Fn.

(App)
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In this case, we have

L i.h. for o LT
L =hap AB A= M[gj]Fl --F,1 B=yxkF,

A
L=y M[y|F,---F,. (App)
(Case 3): The proof is
L Lo
L:>hap)\Z.A A:>st ()\xlme)ylymFanZ( )
L:>St ()\fL’l---l‘m'M)yl...ymFl,,‘Fn n

where z € FV((Axy -+ 2. M)ys - - -y 1y - - - ). If M[y]Fy - -+ F, is not an abstrac-
tion, then we have

T i.h. for o
L =yap A2 A A=y MY|Fy - Fz (n)
L =y M[JF, - F,. "

Note that z & FV(M[GFy -+ F,) € FV((Axy - 2. Mys -+ Y Fy -+ F). I M[JIF, - -

is an abstraction, then n =0, M = \v.B, and o is

SO
A=y (Axy 2. B)yr - Ym2.

where v € {21, ..., Zm, Y1, ., Ym} (otherwise, we rename v). Then we have
L : 1.h. for o
LL:j:th?ziZéjﬁg’, zj]% jS(t )\Lj[%’ )Tg]j} (Abs)
where [, z] = [x1:=Y1, ..., T i =Y, V:=2]. |

We consider an inference rule:

L =pp A\ A A= Bx
L=4x<B

(n™) with the proviso: = & FV(B).

This is an extension of () rule (B may be an abstraction).

Lemma 3.5 The rule (n™) is admissible; that is, if L —pap Av.A, A -4 Bz, and
x & FV(B), then L —g B.

Proof If B is not an abstraction, then () is just the rule (n). If B = \y.C, then
we have

A=y (M\y.O)x
L =pap \Me.A A=y Cly = 2
L =4 \e.(Cly :=z]) = M\y.C.

Note that x ¢ FV(C). |

Lem.3.4
(Abs)




Lemma 3.6 If M —y N and P —4 Q, then M[z := P] —4 N[z := Q).

Proof Similar to the proof of Lemma 3.3 (y = Q). The only difference is that
N[z:=Q] may be an abstraction, in Case 5, that is in contravention of the proviso
of (n) rule. In such a case, we use the rule (n*) (Lemma 3.5) to infer M[P] —4 N[Q].

Lemma 3.7 If L -y (Ae.M)NF,---F,, then L -y M|x := N|F;---F,, where
n > 0.

Proof Similar to the proof of Lemma 3.4. (m =1 and y,,, = N. In Case 1, we use
Lemma 3.6 instead of 3.3. In Case 3, we use () rule (Lemma 3.5).) |
Lemma 3.8 If L — M —g, N, then L —4 N.

Proof By induction on the proof of L =4 M. We divide cases according to the last

inference of the proof. Let R be the occurrence of the gn-redex such that M LN an N.
(Case 1): The proof is

T o T
L=ppAB A=4C B=4xD
L=, CD (App)

where M = CD.

(Subcase 1-1): R = CD; that is, C = \z.E, M = (Az.E)D and N = E[z := D].
This is a special case of Lemma 3.7.

(Subcase 1-2): R is in C; that is, C ign C" and N = C'D. In this case, we have

LT i.h. for o LT
L =y AB A=y C' B=4xD (App)
L=4C'D. pp

(Subcase 1-3): R is in D. This is similar to Subcase 1-2.
(Case 2): The proof is

s e

L= At A A=y B
L =4 \.B (Abs)

where M = \z.B.
(Subcase 2-1): R = A\z.B; that is, B = Nz, M = Ax.(Nz), and = ¢ FV(N).
This is just the rule (n*) (Lemma 3.5).



(Subcase 2-2): R is in B; that is, B ign B’ and N = \z.B’. Then we have

L : 1h. for o
L=y Ao A A=y B
L =q \t.B. (Abs)

(Case 3): The proof is

L Lo
L =pp A2 A A=y Mz
L=g M ()

where x ¢ FV(M) and M is not an abstraction. In this case, we have

s : L.h. for o (because Mz —g, Nx)
L =pp M A A=y No
= (n*) (Lem. 3.5)
Note that = € FV(N) C FV(M). |

Lemma 3.9 M —y M.

Proof By induction on the structure of M. |

Theorem 3.10 If M — 3, N, then M —4 N.

Proof Suppose M = M, —g, My —p, -+ —g; M, = N. We can show M —»y M;
forv=1,...,k, by Lemmas 3.9 and 3.8. |

Now the Weak Standardization Theorem 2.1 is obvious by Theorems 3.1 and
3.10.

4 Remarks

(1) It seems that we can prove, by the similar proof of Theorem 3.1, the strong
version of it: If M —» N, then there is a strongly standard Pn-reduction sequence
from M to N. Then the Strong Standardization Theorem for #n-reduction is proved.

(2) In the case of f-reduction, the Leftmost Reduction Theorem is an easy corollary

to the Standardization Theorem because we have the following: If M L, ERRE Ln, 3

N is a standard B-reduction sequence and N is a -normal form, then Ry,..., R,
are all the leftmost occurrences of [3-redexes. However, this does not hold for g3n-
reduction: there are counterexamples

M/’-((Ay-(yy))(lfﬁﬁ o M-((M-(w))%) 2O, L Ny (yy)
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and

Iy (yy)) (Ay.(yy))z
Az (0w () ) 22025 e (- () ) 2225, A (22)

which are strongly standard and end with #n-normal forms, but neither of them is
a leftmost reduction sequence. Note that these can be regarded as the sequences

Az (- (y)E) ) 2, A (O (gy)r) S5, Az (a)

and
10 (yy)) Az (yy)))
Aw.(my(yy))x) s AiL“-((Ay-(sz))ﬂC) e (),

neither of which is weakly standard; then these are not counterexamples. The

overlap of redexes \z. <()\y(yy))x> causes a problem.
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